Skip to main content
Log in

Brown and black carbons in megacity smogs

  • Atmospheric Radiation, Optical Weather, and Climate
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

AERONET data are used to analyze variations in aerosol radiative characteristics caused by variations in the content of brown and black carbons in smogs of megacities by the example of Beijing, São Paulo, Santiago, and Mexico City. It is shown that the contribution of brown carbon to the imaginary part of refractive index at a wavelength of 440 nm in smogs can exceed the contribution of black carbon by a factor of three. In megacity smogs the spectral dependences of the aerosol absorption optical depth can be approximated by power-law functions with satisfactory accuracy, except in certain Beijing smogs at a wavelength of 400 nm for large relative concentrations of brown carbon. It is shown that the contribution of the coarse aerosol fraction to the total aerosol extinction optical depth in megacity smogs can be from 6 to 20% for wavelengths of 440 and 1020 nm, respectively, and that the contribution to aerosol absorption optical depth can be from 22% for a wavelength of 440 nm to 38% for a wavelength of 1020 nm. The aerosol in megacity smogs differs from the smoke aerosol from large-scale fires in the boreal forests of Russia by increased contribution of the coarse aerosol fraction to the total aerosol volume and by a relatively large imaginary part of the refractive index, and, hence, by a larger absorptance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. Feng, V. Ramanthan, and V. R. Katamarthi, “Brown carbon: A significant atmospheric absorber of solar radiation?,” Atmos. Chem. Phys. 13 (17), 8607–8621 (2013).

    Article  ADS  Google Scholar 

  2. B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, I. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, N. Nakajima, F. Lavenu, L. Jakowiak, and A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Remote Sens. Env. 66 (1), 1–16 (1998).

    Article  Google Scholar 

  3. G. I. Gorchakov, S. A. Sitnov, M. A. Sviridenkov, E. G. Semoutnikova, A. S. Emilenko, A. A. Isakov, V. M. Kopeikin, A. V. Karpov, I. A. Gorchakova, K. S. Verichev, G. A. Kurbatov, and T. Ya. Ponomareva, “Satellite and ground-based monitoring of smoke in the atmosphere during the summer wildfires in European Russia in 2010 and Siberia in 2012,” Int. J. Remote Sens. 35 (15), 5698–5721 (2014).

    Google Scholar 

  4. V. S. Kozlov, E. P. Yausheva, S. A. Terpugova, M. V. Panchenko, D. G. Chernov, and V. P. Shmargunov, “Optical-microphysical properties of smoke haze from Siberian forest fires in summer 2012,”, Int. J. Remote Sens. 35 (15), 5722–5741 (2014).

  5. G. S. Golitsyn, G. I. Gorchakov, E. I. Grechko, E. G. Semutnikova, V. S. Rakitin, E. V. Fokeeva, A. V. Karpov, G. A. Kurbatov, E. S. Baikova, and T. P. Safrygina, “Extreme carbon monoxide pollution of the atmospheric boundary layer in Moscow region in the summer of 2010,” Dokl. Earth Sci. 441 (2), 1666–1672 (2011).

    Article  Google Scholar 

  6. G. S. Golitsyn, A. Kh. Shukurov, A. S. Ginzburg, A. G. Sutugin, and A. V. Andronova, “Complex study of optical microphysical properties of smoke aerosol,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 24 (3), 227–234 (1988).

    ADS  Google Scholar 

  7. I. I. Mokhov, “Specific features of the 2010 summer heat formation in the European territory of Russia in the context of general climate changes and climate anomalies,” Izv., Atmos. Ocean. Phys. 47 (6), 653–660 (2011).

    Article  Google Scholar 

  8. I. A. Gorchakova and I. I. Mokhov, “The radiative and thermal effects of smoke aerosol over the region of Moscow during the summer fires of 2010,” Izv., Atmos. Ocean. Phys. 48 (5), 496–503 (2012).

    Article  Google Scholar 

  9. V. G. Bondur, “Space monitoring of wild fires in Russia under extreme hot in 2010,” Issled. Zemli Kosmosa, No. 3, 3–13 (2011).

    Google Scholar 

  10. V. G. Bondur, “Space monitoring of emission of trace gases and aerosols in wild fires in Russia,” Issled. Zemli Kosmosa, No. 6, 21–25 (2015).

    Google Scholar 

  11. N. Chubarova, E. Nezval, M. Sviridenkov, A. Smirnov, and I. Slutsker, “Smoke aerosol and its radiative effects during extreme fire event over Central Russia in summer 2010,” Atmos. Measur. Technol. 5 (3), 557–568 (2012).

    Article  ADS  Google Scholar 

  12. N. F. Elanskii, I. I. Mokhov, I. B. Belikov, E. V. Berezina, A. S. Elokhov, V. A. Ivanov, N. V. Pankratova, O. V. Postylyakov, A. N. Safronov, A. I. Skorokhod, and R. A. Shumskii, “Gaseous admixtures in the atmosphere over Moscow during the 2010 summer,” Izv., Atmos. Ocean. Phys. 47 (6), 729–738 (2011).

    Article  Google Scholar 

  13. I. N. Kuznetsova, A. M. Zvyagintsev, and E. G. Semutnikova, Environmental Consequences of Weather Anomalies in Summer 2010, The Analysis of Abnormal Weather Conditions in Summer 2010 (Priroda, Moscow, 2010), p. 58–64 [in Russian].

    Google Scholar 

  14. S. A. Sitnov, G. I. Gorchakov, M. A. Sviridenkov, V. M. Kopeikin, T. Ya. Ponomareva, and A. V. Karpov, “The effect of atmospheric circulation on the evolution and radiative forcing of smoke aerosol in European Russian in summer 2010,” Issled. Zemli Kosmosa, No. 2, 28–41 (2013).

    Google Scholar 

  15. G. I. Gorchakov, M. A. Sviridenkov, E. G. Semoutnikova, N. E. Chubarova, B. N. Kholben, A. V. Smirnov, A. S. Emilenko, A. A. Isakov, V. M. Kopeikin, A. V. Karpov, E. A. Lezina, and O. S. Zadorozhnaya, “Optical and microphysical parameters of the aerosol in the smoky atmosphere of the Moscow region in 2010,” Dokl. Earth. Sci. 437 (2), 513–517 (2011).

    Article  ADS  Google Scholar 

  16. N. V. Dudorova and B. D. Belan, “Estimation of factors determining formation of the urban heat island in Tomsk,” Opt. Atmos. Okeana 29 (5), 426–436 (2016).

    Google Scholar 

  17. M. V. Panchenko, T. B. Zhuravleva, V. S. Kozlov, I. M. Nasrtdinov, V. V. Pol’kin, S. A. Terpugova, and D. G. Chernov, “Estimation of aerosol radiation effects under background and smoke-haze atmospheric conditions over Siberia from empirical data,” Rus. Meteorol. Hydrol. 41 (2), 104–111 (2016).

    Article  Google Scholar 

  18. T. K. Sklyadneva, G. A. Ivlev, B. D. Belan, M. Yu. Arshinov, and D. V. Simonenkov, “The radiation regime of Tomsk in conditions of a smoky haze,” Opt. Atmos. Okeana 28 (3), 215–222 (2015).

    Google Scholar 

  19. T. F. Eck, B. N. Holben, J. S. Reid, A. Sinyk, E. J. Hyer, N. T. O' Neil, G. E. Shaw, J. R. Vandle Castle, F. S. Chapin, O. Dubovick, A. Smirnov, E. Vermote, J. S. Schafer, D. Giles, I. Slutsker, M. Sorokine, and W. W. New-Comb, “Optical properties of boreal region biomass burning aerosols in Central Alaska and seasonal variation of aerosol optical depth at an Arctic coastal site,” J. Geophys. Res. 114, D11201, 14 (2009).

    Google Scholar 

  20. V. E. Zuev and G. M. Krekov, Optical Models of the Atmosphere (Gidrometeoizdat, Leningrad, 1986) [in Russian].

    Google Scholar 

  21. K. Lewis, W. P. Arnott, H. Moosmuller, and C. E. Wold, “Strong spectral variations of biomass smoke light absorption and single scattering albedo observed with a novel dual wavelength photoacoustic instrument,” J. Geophys. Res. 113, D16203 (2008). doi 10.1029/2007JD009699

    Article  ADS  Google Scholar 

  22. T. V. Kirchstetter, T. Novakov, and P. V. Hobbs, “Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon,” J. Geophys. Res. 109, D21208 (2004). doi 10.1029/2004JD004999

    Article  ADS  Google Scholar 

  23. O. Dubovic and M. D. King, “A flexible inversion algorithm for the retrieval of aerosol optical properties from Sun and Sky radiance measurements,” J. Geophys. Res., D 105 (16), 20673–20696 (2000).

    Article  ADS  Google Scholar 

  24. M. Schnaiter, C. Linke, O. Mohler, K.-H. Naumann, H. Saathoff, H. Schmidt, R. Wagner, and B. Wehner, “Absorption amplification of black carbon internally mixed with secondary organic aerosol,” J. Geophys. Res. 110, D19204 (2005).

    Article  ADS  Google Scholar 

  25. J. M. Haywood and V. Ramaswamy, “Global sensitivity studies of the direct radiative forcing due to anthropogenic sulfate and black carbon aerosols,” J. Geophys. Res., D 103 (6), 6043–6058 (1998).

    Article  ADS  Google Scholar 

  26. K. A. Fuller, W. C. Malm, and S. M. Kreidenweis, “Effects of mixing on extinction by carbonacedus particles,” J. Geophys. Res., D 104 (13), 15941–15954 (1999).

    Article  ADS  Google Scholar 

  27. P. V. Chyleck, M. Srivastava, R. G. Pinnick, and R. T. Wang, “Scattering of electromagnetic waves by composite spherical particles. Experiment and effective medium approximations,” Appl. Opt. 27 (12), 2396–2404 (1998).

    Article  ADS  Google Scholar 

  28. G. I. Gorchakov, P. P. Anikin, A. A. Volokh, A. S. Emilenko, A. A. Isakov, V. M. Kopeikin, T. Ya. Ponomareva, E. G. Semutnikova, M. A. Sviridenkov, and K. A. Shukurov, “Study of the composition of the atmospheric smoke screen over the Moscow region,” Dokl. Earth Sci. 390 (5), S. 562–565 (2003).

    Google Scholar 

  29. G. I. Gorchakov, P. P. Anikin, A. A. Volokh, A. S. Emilenko, A. A. Isakov, V. M. Kopeikin, T. Ya. Ponomareva, E. G. Semutnikova, M. A. Sviridenkov, and K. A. Shukurov, “Studies of the smoky atmosphere composition over Moscow during peatbog fires in the summer–fall season of 2002,” Izv., Atmos. Ocean. Phys. 40 (3), 323–336 (2004).

    Google Scholar 

  30. R. W. Bergstrom, P. B. Russel, and P. Hignett, “Wavelength dependence the absorption of black carbon partiucles: Predictions and results from TARFOX experiment and implications for the aerosol single scattering albedo,” J. Atmos. Sci. 59 (3), 567–577 (2002).

    Article  ADS  Google Scholar 

  31. O. Dubovic, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. O. King, D. Tanre, and I. Slutsker, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59 (3), 590–608 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. Gorchakov.

Additional information

Original Russian Text © G.I. Gorchakov, A.V. Karpov, A.V. Vasiliev, I.A. Gorchakova, 2017, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorchakov, G.I., Karpov, A.V., Vasiliev, A.V. et al. Brown and black carbons in megacity smogs. Atmos Ocean Opt 30, 248–254 (2017). https://doi.org/10.1134/S1024856017030071

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856017030071

Keywords

Navigation