Advertisement

Atmospheric and Oceanic Optics

, Volume 30, Issue 3, pp 222–225 | Cite as

Dynamics of the structure of multiple filamentation domain of laser pulses in glass

  • D. V. ApeksimovEmail author
  • S. S. Golik
  • A. A. Zemlyanov
  • A. M. Kabanov
  • A. Yu. Mayor
  • A. V. Petrov
Nonlinear Optics

Abstract

The results of experiments on the study of spatial characteristics of the multiple filamentation domain of GW Ti:Sapphire laser pulses in glass are presented. The dependences of the coordinates of the beginning, end, and diameter of the multiple filamentation domain (MFD) vs the laser pulse energy are derived. It is found that when the average intensity in the beam attains certain values, MFD is formed near the illuminated side of the glass sample. When the beam intensity attains a threshold, the secondary MFD is formed; its spatial characteristics depend on the pulse-periodic irradiation exposure time. The diameter of the secondary MFD and coordinates of its beginning depend on the exposure time. The spatial characteristics of the primary MFD were independent of the exposure time during the experiments.

Keywords

laser radiation femtosecond pulse self-focusing multiple filamentation glass 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. E. Geints, A. A. Zemlyanov, A. M. Kabanov, and G. G. Matvienko, Nonlinear Atmospheric Femtosecond Optics, Ed. by A.A. Zemlyanov (Publishing House of IAO SB RAS, Tomsk, 2010) [in Russian].Google Scholar
  2. 2.
    S. V. Chekalin and V. P. Kandidov, “From self-focusing light beams to femtosecond laser pulse filamentation,” Phys.-Uspekhi 56 (2), 123–140 (2013).ADSCrossRefGoogle Scholar
  3. 3.
    E. F. Martynovich, A. V. Kuznetsov, A. V. Kirpichnikov, E. V. Pestryakov, and S. N. Bagaev, “Formation of luminescent emitters by intense laser radiation in transparent media,” Quantum Electron. 43 (5), 463–466 (2013).ADSCrossRefGoogle Scholar
  4. 4.
    A. A. Dergachev, V. N. Kadan, and S. A. Shlenov, “Interaction of noncollinear femtosecond laser filaments in sapphire,” Quantum Electron. 42 (2), 125–129 (2012).ADSCrossRefGoogle Scholar
  5. 5.
    D. V. Apeksimov, S. S. Golik, A. A. Zemlyanov, A. N. Iglakova, A. M. Kabanov, O. I. Kuchinskaya, G. G. Matvienko, V. K. Oshlakov, A. V. Petrov, and E. B. Sokolova, “Multiple filamentation of collimated laser radiation in water and glass,” Atmos. Ocean. Opt. 29 (2), 135–140 (2016).CrossRefGoogle Scholar
  6. 6.
    D. V. Apeksimov, O. A. Bukin, S. S. Golik, A. A. Zemlyanov, A. N. Iglakova, A. M. Kabanov, O. I. Kuchinskaya, G. G. Matvienko, V. K. Oshlakov, A. V. Petrov, and E. B. Sokolova, “Multiple filamentation of laser pulses in a glass,” Rus. Phys. J. 58 (11), 1581–1586 (2016).CrossRefGoogle Scholar
  7. 7.
    Yu. E. Geints, S. S. Golik, A. A. Zemlyanov, A. M. Kabanov, and A. V. Petrov, “Microstructure of the multiple-filamentation zone formed by femtosecond laser radiation in a solid dielectric,” Quantum Electron. 46 (2), 133–141 (2016).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • D. V. Apeksimov
    • 1
    Email author
  • S. S. Golik
    • 2
    • 3
  • A. A. Zemlyanov
    • 1
  • A. M. Kabanov
    • 1
  • A. Yu. Mayor
    • 2
  • A. V. Petrov
    • 1
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia
  2. 2.Institute of Automation and Control Processes, Far Eastern BranchRussian Academy of SciencesVladivostokRussia
  3. 3.Far Eastern Federal UniversityVladivostokRussia

Personalised recommendations