Skip to main content
Log in

Numerical simulation of sensorless adaptive phase correction of regular, vortical, and incoherent multimode laser beams

  • Adaptive and Integral Optics
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Some aspects are considered of the phase correction of regular and vortex (speckled) laser beams by a flexible adaptive mirror, with the surface control using the stochastic parallel gradient (SPG) algorithm, without wavefront sensor. It is shown that the optimal choice of the criterion function (metric) and basis functions allows one to improve the phase correction accuracy and the rate of SPG algorithm convergence. A possibility of partial phase correction of incoherent multimode radiation is shown to be implementable, e.g., in a laser cavity with an optically inhomogeneous gain medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. P. Lukin, “Adaptive optics in the formation of optical beams and images,” Phys.-Uspekhi 57 (6), 556–592 (2014).

    Article  ADS  Google Scholar 

  2. S. G. Garanin, A. N. Manachinsky, F. A. Starikov, and S. V. Khokhlov, “Phase correction of laser radiation with the use of adaptive optical systems at the Russian Federal Nuclear Center—Institute of Experimental Physics,” Optoelectron. Instr. Data Proc. 48 (2), 134–141 (2012).

    Article  Google Scholar 

  3. F. A. Starikov, G. G. Kochemasov, S. M. Kulikov, A. N. Manachinsky, N. V. Maslov, A. V. Ogorodnikov, S. A. Sukharev, V. P. Aksenov, I. V. Izmailov, F. Yu. Kanev, V. V. Atuchin, and I. S. Soldatenkov, “Wave front reconstruction of an optical vortex by Hartmann–Shack sensor,” Opt. Lett. 32 (16), 2291–2293 (2007).

    Article  ADS  Google Scholar 

  4. V. P. Aksenov, I. V. Izmailov, F. Yu. Kanev, and F. A. Starikov, “Algorithms for the reconstruction of the singular wave front of laser radiation: analysis and improvement of accuracy,” Quantum Electron. 38 (7), 673–677 (2008).

    Article  ADS  Google Scholar 

  5. F. A. Starikov, G. G. Kochemasov, M. O. Koltygin, S.M. Kulikov, A. N. Manachinsky, N. V. Maslov, S. A. Sukharev, V. P. Aksenov, I. V. Izmailov, F. Yu. Kanev, V. V. Atuchin, and I. S. Soldatenkov, “Correction of vortex laser beam in a closed-loop adaptive system with bimorph mirror,” Opt. Lett. 34 (15), 2264–2266 (2009).

    Article  ADS  Google Scholar 

  6. A. A. Babin, O. I. Beloshitskaya, V. A. Bogachev, S. G. Garanin, M. A. Glukhov, M. O. Koltygin, A. V. Kopalkin, R. S. Kuzin, S. M. Kulikov, A. N. Manachinsky, S. N. Nosov, F. A. Starikov, S. A. Suharev, and V.V. Feoktistov, “Measurement of optical distortions of a cesium vapor laser by means of Shack–Hartmann sensor,” in Technical Program of the 16th Int. Conf. on Laser Optics “LO-2014". St. Petersburg, June 30–July 4, 2014, p. 33.

    Google Scholar 

  7. M. A. Vorontsov, A. V. Koryabin, V. I. Polezhaev, and V. I. Shmal’gauzen, “Adaptive intracavity control of mode composition of the radiation emitted by a solidstate laser,” Sov. J. Quantum Electron. 21 (8), 818 (1991).

    Article  ADS  Google Scholar 

  8. A. Abbas, L. N. Kaptsov, A. V. Kudryashov, and T. Yu. Cherezova, “Control of parameters of solid-state industrial YAG:Nd3+ laser radiation using methods of adaptive optics. I. Laser cavity with an adaptive mirror,” Sov. J. Quantum Electron. 22 (6), 530–532 (1992).

    Article  ADS  Google Scholar 

  9. W. Lubeigt, G. Valentine, and D. Burns, “Enhancement of laser performance using an intracavity deformable membrane mirror,” Opt. Express 16 (15), 10943–10955 (2008).

    Article  ADS  Google Scholar 

  10. P. Yang, X. Lei, R. Yang, M. Ao, L. Dong, and B. Xu, “Fast and stable enhancement of the far-field peak power by use of an intracavity deformable mirror,” Appl. Opt., B 100 (3), 591–595 (2010).

    ADS  Google Scholar 

  11. M. Vorontsov, G. Carhart, and J. Ricklin, “Adaptive phase-distortion correction based on parallel gradientdescent optimization,” Opt. Lett. 22 (12), 907–909 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Bogachev.

Additional information

Original Russian Text © V.A. Bogachev, S.G. Garanin, F.A. Starikov, R.A. Shnyagin, 2016, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogachev, V.A., Garanin, S.G., Starikov, F.A. et al. Numerical simulation of sensorless adaptive phase correction of regular, vortical, and incoherent multimode laser beams. Atmos Ocean Opt 30, 191–197 (2017). https://doi.org/10.1134/S1024856017020051

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856017020051

Keywords

Navigation