Advertisement

Atmospheric and Oceanic Optics

, Volume 30, Issue 1, pp 50–54 | Cite as

Optical contrast inversion at slick–ripple interfaces

  • A. S. ZapevalovEmail author
  • N. E. Lebedev
  • S. V. Stanichny
Remote Sensing of Atmosphere, Hydrosphere, and Underlying Surface
  • 16 Downloads

Abstract

The inversion of the optical contrasts between the ripple and slick areas on the sea surface produced by natural processes is analyzed. It is shown that, depending on the solar zenith angle and the angle at which a spacecraft-mounted optical scanner observes the slick–ripple interface, the intensity of light reflected from the slick area may be either greater or less than the intensity of light reflected from the ripple area. The sea surface slopes are assessed, at which the inversion of the slick–ripple optical contrast occurs.

Keywords

optical image slick–ripple optical contrast distribution of the sea surface slopes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. K. Korotaev, V. V. Pustovoitenko, and L. N. Radaikina, “Remote sensing of seas and oceans. Development of works in satellite oceanology,” in Development of Marine Sciences and Technologies in Marine Hydrophysical Institue for 75 years (Marine Hydrophysical Institute, Sevastopol, 2004), pp. 585–625 [in Russian].Google Scholar
  2. 2.
    A. Yu. Ivanov, “Slicks and films on spaceboren radar images,” Issled. Zemli Kosmosa, 3, 73–96 (2007).Google Scholar
  3. 3.
    A. S. Monin and V. P. Krasitskii, Ocean Surface Phenomena (Gidrometeoizdat, Leningrad, 1985) [in Russian].Google Scholar
  4. 4.
    A. N. Serebryany, “Slick and suloy generating processes in the sea. Internal waves,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 9 (2), 275–286 (2012).Google Scholar
  5. 5.
    G. N. Khristoforov, Changes in The Sea Wind Wave Structure in the Region of Surface Slick. Effect of Large-Scale Internal Waves on the Sea Surface (IPF AN SSSR, Gor’kii, 1982), pp. 189–208 [in Russian].Google Scholar
  6. 6.
    C. Cox and W. Munk, “Measurements of the roughness of the sea surface from photographs of the sun glitter,” J. Opt. Soc. Amer. 44 (11), 838–850 (1954).ADSCrossRefGoogle Scholar
  7. 7.
    A. S. Zapevalov, “Probability of mirror reflection glitters during oblique sounding of the sea surface,” Oceanology 45 (1), 11–15 (2005).Google Scholar
  8. 8.
    O. G. Konstantinov and V. V. Novotryasov, “Surface manifestations of internal waves observed using a landbased video system,” Izv., Atmos. Ocean. Phys. 49 (3), 334–338 (2013).CrossRefGoogle Scholar
  9. 9.
    O. G. Konstantinov and A. N. Pavlov, “Complex monitoring of the state of the sea water basins by optical methods. Part 3. Recording of dynamic processes by slicks on the sea surface,” Atmos. Ocean. Opt. 26 (4), 300–307 (2013).CrossRefGoogle Scholar
  10. 10.
    N. E. Lebedev, “Determining the thickness of oil film on sea surface through contrast of brightness in the near-IR range,” Protsessy Geosredakh 1 (1), 48–53 (2015).Google Scholar
  11. 11.
    G. Valenzuela, “Theories for the interaction of electromagnetic and ocean waves. A review,” Bound.-Lay. Meteorol. 13 (1–4), 61–85 (1978).ADSCrossRefGoogle Scholar
  12. 12.
    A. S. Zapevalov, N. E. Lebedev, and K. V. Pokazeev, “The influence of the topographic structure of the sea surface on the error of determining the surface wind by satellite optical scanners,” Atmos. Ocean. Opt. 28 (4), 297–302 (2015).CrossRefGoogle Scholar
  13. 13.
    F. M. Bréon and N. Henriot, “Spaceborne observations of ocean glint reflectance and modeling of wave slope distributions,” J. Geoph. Res. 111 (6) (2006). doi 10.1029/2005JC003343Google Scholar
  14. 14.
    A. S. Zapevalov and N. E. Lebedev, “Simulation of statistical characteristics of sea surface during remote optical sensing,” Atmos. Ocean. Opt. 27 (6), 487–492 (2014).CrossRefGoogle Scholar
  15. 15.
    J. R. Apel, H. M. Byrne, J. R. Proni, and R. L. Charnell, “Observations of oceanic internal and surface waves from the Earth resources technology satellite,” J. Geophys. Res. 80 (6), 865–881 (1975).ADSCrossRefGoogle Scholar
  16. 16.
    O. Yu. Lavrova, M. I. Mityagina, and K. D. Sabinin, “Study of internal wave generation and propagation features in non-tidal seas based on satellite synthetic aperture radar data,” Dokl. Earth Sci. 436 (1), 165–170 (2011).ADSCrossRefGoogle Scholar
  17. 17.
    A. S. Zapevalov and K. V. Pokazeev, “Statistics of sea surface slopes and its application to laser sounding,” Moscow Univ. Phys. Bull. 59 (5), 52–57 (2004).Google Scholar
  18. 18.
    G. N. Khristoforov, A. S. Zapevalov, and M. V. Babii, “Variations in the sea surface roughness parameters when changing from calm to waves,” Izv. Fiz. Atmos. Okeana 28 (4), 424–431 (1992).Google Scholar
  19. 19.
    M G. Kendall and A. Stuart, The Advanced Theory of Statistics. Vol. 1. Distribution Theory (Hafner Publishing Co., New York, 1963).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. S. Zapevalov
    • 1
    Email author
  • N. E. Lebedev
    • 1
  • S. V. Stanichny
    • 1
  1. 1.Marine Hydrophysical InstituteSevastopolRussia

Personalised recommendations