Skip to main content

Observation of the Earth’s surface from the space through a gap in a cloud field

Abstract

For purposes of atmospheric correction of satellite images, the problem of estimating the distance from the cloud gap center at which the effect from cloudiness on the satellite image can be neglected is posed. The Monte Carlo method with the backward simulation scheme is used. The value for the radius of the gap in continuous cloudiness at which the influence of clouds changes the received radiation intensity by 10% has been obtained. Dependences of the received intensity on the gap radius have been obtained and explained.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    V. A. Tolpin, E. A. Lupyan, S. A. Bartalev, D. E. Plotnikov, and A. M. Matveev, “Possibilities of agricultural vegetation condition analysis with the “VEGA” satellite service,” Opt. Atmos. Okeana 27 (7), 581–586 (2014).

    Google Scholar 

  2. 2.

    D. V. Malakhov and A. F. Islamgulova, “The quantitative interpretation of pasture image parameters: An experience of low and moderate spatial resolution remotely sensed data application,” Opt. Atmos. Okeana 27 (7), 587–592 (2014).

    Google Scholar 

  3. 3.

    P. N. Dagurov, A. V. Dmitriev, Zh. B. Dymbrylov, and S. B. Radnaeva, “Earth’s surface brightness temperature measured by the microwave radiometer SMOS, and the problem of soil moisture recovering,” Opt. Atmos. Okeana 27 (7), 605–609 (2014).

    Google Scholar 

  4. 4.

    E. A. Cherenkova and E. A. Popova, “Dynamics of soil moistening in spring and summer 2010 in the European Russia on the basis of the analysis of remote sensing data,” Sovr. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 12 (4), 119–130 (2015).

    Google Scholar 

  5. 5.

    T. N. Chimitdorzhiev, I. I. Kirbizhekova, and M. E. Bykov, “Study of landslide processes and deformations of the landscape of the Yamal peninsula by radar interferometry and texture analysis,” Opt. Atmos. Okeana 27 (7), 610–614 (2014).

    Google Scholar 

  6. 6.

    V. V. Vinogradova, T. B. Titkova, E. A. Belonovskaya, and R. G. Gracheva, “The impact of climate change on mountain landscapes of the Northern Caucasus,” Sovr. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 12 (6), 35–47 (2015).

    Google Scholar 

  7. 7.

    V. V. Kozoderov, E. V. Dmitriev, and V. P. Kamentsev, “Technologies for processing optical images of high spatial and spectral resolution,” Atmos. Ocean. Opt. 27 (6), 558–565 (2014).

    Article  Google Scholar 

  8. 8.

    O. A. Tomshin and V. S. Solovyev, “Study of variations in parameters of atmospheric aerosol due to large-scale forest fires in Central Yakutia,” Atmos. Ocean. Opt. 28 (1), 95–99 (2015).

    Article  Google Scholar 

  9. 9.

    V. V. Kozoderov, “Use of optical remote sensing data for the study of natural climate processes,” Klimat Priroda 3 (2), 3–16 (2012).

    Google Scholar 

  10. 10.

    M. Yu. Kataev and A. A. Bekerov, “Detection of ecological changes in the natural environment from satellite measurements,” Opt. Atmos. Okeana 27 (7), 652–656 (2014).

    Google Scholar 

  11. 11.

    L. M. Mitnik and E. S. Khazanova, “Ice cover dynamics in the East Siberian and Laptev Seas at the second half of October 2014 remote sensing data,” Sovr. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 12 (2), 100–113 (2015).

    Google Scholar 

  12. 12.

    A. M. Kauazov, A. S. Dara, M. Zh. Batyrbaeva, I. S. Vitkovskaya, N. R. Muratova, V. G. Salnikov, G. K. Turulina, S. E. Polyakova, L. F. Spivak, and S. I. Tyurebaeva, “Research of dynamics dates of snow cover disappearance in the Northern Kazakhstan,” Sovr. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 13 (1), 161–168 (2016).

    Google Scholar 

  13. 13.

    N. N. Zavalishin, “Reconstruction of the annual average values of the Earth’s albedo,” Atmos. Ocean. Opt. 27 (6), 493–498 (2014).

    Article  Google Scholar 

  14. 14.

    A. V. Zimovaya, M. V. Tarasenkov, and V. V. Belov, “Allowance for polarization in passive space sounding of reflective properties of the Earth’s surface,” Atmos. Ocean. Opt. 29 (4), 342–347 (2016).

    Article  Google Scholar 

  15. 15.

    O. V. Nikolaeva, “A new algorithm of retrieving the surface albedo by satellite remote sensing data,” Atmos. Ocean. Opt. 29 (4), 342–347 (2016).

    Article  Google Scholar 

  16. 16.

    D. V. Solomatov, S. V. Afonin, and V. V. Belov, “Construction of cloud mask and removal of semitransparent clouds on ETM+/Landsat-7 satellite images,” Opt. Atmos. Okeana 26 (9), 798–803 (2013).

    Google Scholar 

  17. 17.

    B. A. Kargin and S. M. Prigarin, “Imitational simulation of cumulus clouds for studying solar radiative transfer in the atmosphere by the Monte Carlo method,” Atmos. Ocean. Opt. 7 (9), 690–696 (1994).

    Google Scholar 

  18. 18.

    V. E. Zuev and G. A. Titov, Atmospheric Optics and the Climate (Spektr, Tomsk, 1996) [in Russian].

    Google Scholar 

  19. 19.

    S. M. Prigarin, T. B. Zhuravleva, and P. V. Volikova, “Poisson model of multilayer broken clouds,” Atmos. Ocean. Opt. 15 (10), 832–838 (2002).

    Google Scholar 

  20. 20.

    T. B. Zhuravleva and K. M. Firsov, “Algorithms for calculation of sunlight fluxes in the cloudy and cloudless atmosphere,” Atmos. Ocean. Opt. 17 (11), 799–806 (2004).

    Google Scholar 

  21. 21.

    T. B. Zhuravleva, “Simulation of solar radiative transfer under different atmospheric conditions. Part II. Stochastic clouds,” Atmos. Ocean. Opt. 21 (3), 163–175 (2008).

    Google Scholar 

  22. 22.

    G. A. Titov, T. B. Zhuravleva, and V. E. Zuev, “Mean radiation fluxes in the near-IR spectral range: Algorithms for calculation,” J. Geophys. Res., D 102 (2), 1819–1832 (1997).

    ADS  Article  Google Scholar 

  23. 23.

    S. M. Prigarin, B. A. Kargin, and U. G. Oppel, “Random fields of broken clouds and their associated direct solar radiation, scattered transmission and albedo,” Pure Appl. Opt. 7 (6), 1389–1402 (1998).

    ADS  Article  Google Scholar 

  24. 24.

    O. V. Nikolaeva, L. P. Bass, T. A. Germogenova, A. A. Kokhanovsky, V. S. Kuznetsov, and B. Mayer, “The influence of neighbouring clouds on the clean sky reflectance studied with the 3-D transport code RADUGA,” J. Quant. Spectrosc. Radiat. Transfer. 24 (3–4), 405–424 (2005).

    ADS  Article  Google Scholar 

  25. 25.

    A. Marshak, A. Davis, W. Wiscombe, and R. Cahalan, “Radiative smoothing in fractal clouds,” J. Geophys. Res. D 100 (12), 26247–26261 (1995).

    ADS  Article  Google Scholar 

  26. 26.

    A. Marshak, G. Wen, J. A. Coakley, L. A. Remer, N. G. Loeb, and R. F. Cahalan, “A simple model for the cloud adjacency effect and the apparent bluing of aerosols near clouds,” J. Geophys. Res. 113 ((7), 17 (2008).

    Google Scholar 

  27. 27.

    A. Marshak, K. F. Evans, T. Varnai, and G. Wen, “Extending 3D near-cloud corrections from shorter to longer wavelengths,” J. Quant. Spectrosc. Radiat. Transfer 147, 79–85 (2014).

    ADS  Article  Google Scholar 

  28. 28.

    G. Wen, A. Marshak, L. Remer, R. Levy, N. Loeb, T. Varnai, and R. F. Cahalan, “Correction of MODIS Aerosol Retrieval for 3D radiative effects in broken cloud fields,” AIP Conf. Proc. 1531, 280–283 (2013).

    ADS  Article  Google Scholar 

  29. 29.

    G. Wen, A. Marshak, R. Levy, L. A. Remer, N. G. Loeb, T. Varnai, and R. F. Cahalan, “Improvement of MODIS aerosol retrievals near clouds,” J. Geophys. Res. Atmos. 118, 9168–9181 (2013).

    ADS  Article  Google Scholar 

  30. 30.

    T. Varnai and A. Marshak, “Effect of cloud fraction on near-cloud aerosol behavior in the MODIS atmospheric correction ocean color product,” Remote Sens. 7 (5), 5283–5299 (2015).

    ADS  Article  Google Scholar 

  31. 31.

    G. I. Marchuk, G. A. Mikhailov, M. A. Nazaraliev, R. A. Darbinyan, B. A. Kargin, and B. S. Elepov, Monte Carlo Method in Atmospheric Optics (Nauka, Novosibirsk, 1976) [in Russian].

    Google Scholar 

  32. 32.

    F. X. Kneizys, E. P. Shettle, G. P. Anderson, L.W. Abreu, J. H. Chetwynd, J. E. A. Selby, S. A. Clough, and W. O. Gallery, User guide to LOWTRAN-7 (Hansom AFB, 2010).

    Google Scholar 

  33. 33.

    E. L. Krinov, Spectral Refractivity of Natural Formations (Izd-vo AN SSSR, Moscow, 1947) [in Russian].

    Google Scholar 

  34. 34.

    M. V. Tarasenkov and V. V. Belov, “Software package for reconstructing reflective properties of the Earth’s surface in the visible and UV ranges,” Atmos. Ocean. Opt. 28 (1), 89–94 (2015).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. V. Tarasenkov.

Additional information

Original Russian Text © M.V. Tarasenkov, I.V. Kirnos, V.V. Belov, 2017, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tarasenkov, M.V., Kirnos, I.V. & Belov, V.V. Observation of the Earth’s surface from the space through a gap in a cloud field. Atmos Ocean Opt 30, 39–43 (2017). https://doi.org/10.1134/S1024856017010134

Download citation

Keywords

  • remote sensing
  • Monte Carlo method
  • atmosphere correction
  • cloud field