Atmospheric and Oceanic Optics

, Volume 30, Issue 1, pp 7–12 | Cite as

The retrieval of the coastal water depths from data of multi- and hyperspectral remote sensing imagery

  • O. V. GrigorievaEmail author
  • D. V. ZhukovEmail author
  • A. V. MarkovEmail author
  • V. F. Mochalov
Remote Sensing of Atmosphere, Hydrosphere, and Underlying Surface


A method is considered for rendering coastal water depths according to multi- and hyperspectral remote sensing imagery in the visible and near-infrared spectral regions. The depth is recovered for each pixel on the basis of solution of the inverse problem, which consists in artificial neural network learning with the use of a semianalytical model of radiation transfer in water, taking into account the effects of light scattering and absorption in the underwater light field, at least in three informative spectral channels for each bottom type. A possibility of adjusting the learning process is provided by the use of regression algorithms for determining organic and mineral impurities in water from their in-situ measurements. We enriched the library of the spectral characteristics of different bottom types and found informative identifiers for them. The results are tested on aircraft and hyperspectral space imagery data.


bathymetry hyperspectral data reflectance light absorption and scattering in water 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. R. Gordon and W. R. McCluney, “Estimation of the depth of sunlight penetration in the sea for remote sensing,” Appl. Opt. 14 (2), 413–416 (1975).ADSCrossRefGoogle Scholar
  2. 2.
    D. R. Lyzenga, “Passive remote sensing techniques for mapping water depth and bottom features,” Appl. Opt. 17 (3), 379–383 (1978).ADSCrossRefGoogle Scholar
  3. 3.
    R. P. Stumpf and K. Holderied, “Determination of water depth with high-resolution satellite imagery over variable bottom types,” Liminol. Oceanogr. 48 (1), 547–556 (2003).CrossRefGoogle Scholar
  4. 4.
    Remote Sensing in Meteorology, Oceanography and Hydrology, Ed. by A.P. Crackness (Ellis Horwood, Chichester, 1981).Google Scholar
  5. 5.
    Ocean Optics. Vol. 1. Physical Ocean Optics (Nauka, Moscow, 1983) (in Russian).Google Scholar
  6. 6.
    V. N. Adamenko, K. Ya. Kondrat’ev, D. V. Pozdnyakov, and L. V. Chekhin, Radiation Regime and Optical Properties of Lakes (Gidrometeoizdat, Leningrad, 1991) [in Russian].Google Scholar
  7. 7.
    V. G. Astafurov, T. V. Evsyutkin, K. V. Kuriyanovich, and A. V. Skorokhodov, “Statistical model of cirrus cloud textural features based on MODIS satellite images,” Opt. Atmos. Okeana 27 (7), 640–646 (2014).Google Scholar
  8. 8.
    Z. Lee, K. L. Carder, S. K. Hawes, R. G. Steward, T. G. Peacock, and C. O. Davis, “A model for interpretation of hyperspectral remote-sensing reflectance,” Appl. Opt. 33 (24), 5721–5732 (1994).ADSCrossRefGoogle Scholar
  9. 9.
    A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization,” J. Geophys. Res., C 100 (7), 13321–13332 (1995).ADSCrossRefGoogle Scholar
  10. 10.
    H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res., D 93 (9), 10909–10924 (1988).ADSCrossRefGoogle Scholar
  11. 11.
    K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semianalytic moderate-resolution imaging spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitratedepletion temperatures,” J. Geophys. Res., C 104 (3), 5403–5422 (1999).ADSCrossRefGoogle Scholar
  12. 12. Scholar
  13. 13.
    A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters. II. Bidirectional aspects,” Appl. Opt. 32 (33), 6864–6879 (1993).ADSCrossRefGoogle Scholar
  14. 14.
    O. V. Kopelevich, V. I. Burenkov, S. V. Vazyulya, S. V. Sheberstov, A. A. Terekhova, and A. P. Shibalkova, “Consideration of solar radiation shallow water bottom reflection in the processing of satellite color scanner data,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa 5 (2), 117–127 (2008).Google Scholar
  15. 15. Scholar
  16. 16.
    A. V. Markov, O. V. Grigorieva, A. G. Saidov, D. V. Zhukov, and V. F. Mochalov, “Estimation of the ecological state of the Saint Petersburg sea port water area with the use of the aerospace imagery thematic processing software complex,” Geomatika, 3, 17–21 (2013).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Mozhaysky Military Space AcademySt. PetersburgRussia

Personalised recommendations