Skip to main content
Log in

Overcoming spectroscopic challenges in direct problems of satellite sounding of the atmosphere

  • Spectroscopy of Ambient Medium
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

In this work, we discuss possibilities for obtaining more information from atmospheric sounding with IR-spectroscopy methods by increasing the instrumental spectral resolution and using polarization measurements of the solar and thermal radiation. The disadvantages of the modern methods for calculating the molecular absorption spectra in both rigorous (line-by-line) and fast (based on k-distributions) models of atmospheric radiative transfer are shown. Approaches are suggested to eliminate these disadvantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. IPCC—Intergovernmental Panel on Climate Change. http://www.ipcc.ch.

  2. W. Bach, A. Crane, A. Berger, and A. Longhetto, Carbon Dioxide in the Atmosphere (Mir, Moscow, 1987) [in Russian].

    Google Scholar 

  3. JAIVEx—The Joint Airborne IASI Validation Experiment, 2007. http://www.cimss.ssec.wisc.edu.

  4. The HITRAN Database. http://www.cfa.harvard.edu/hitran/.

  5. R. M. Goody, Atmospheric Radiation (Mir, Moscow, 1966) [in Russian].

    Google Scholar 

  6. O. B. Rodimova, “Spectral line shape and absorption in atmospheric windows,” Opt. Atmos. Okeana 28 (5), 460–473 (2015).

    Google Scholar 

  7. S. A. Clough, M. W. Shephar, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, “Atmospheric radiative transfer modeling: A summary of the AER codes,” J. Quant. Spectrosc. Radiat. Transfer 91 (2), 233–244 (2005).

    Article  ADS  Google Scholar 

  8. J. M. Hartman, C. Boulet, and D. A. Robert, Collisional Effects on Molecular Spectra: Laboratory Experiments and Models, Consequence for Applications (Elseiver, Amsterdam, 2008).

    Google Scholar 

  9. A. Feofilov, L. Rezac, A. Kutepov, and V. Capelle, “Non-LTE radiative transfer in the context of infrared satellite observations of the lower atmosphere,” in Proc. of Int. Symp. “Atmospheric Radiation and Dynamic” (ISARD-2015) (St. Petersburg State University, 2015).

    Google Scholar 

  10. Yu. M. Timofeev and A. V. Vasil’ev, Theoretical Foundations of the Atmospheric Optics (Nauka, St. Petersburg, 2003) [in Russian].

    Google Scholar 

  11. B. Fomin and V. Falaleeva, “A polarized atmospheric radiative transfer model for calculations of spectra of the Stokes parameters of shortwave radiation based on the line-by-line and Monte Carlo methods,” Atmosphere 3 (4), 451–467 (2012).

    Article  ADS  Google Scholar 

  12. C. Cornet, L. C-Labonnote, and F. Szcap, “Threedimensional polarized Monte Carlo atmospheric radiative transfer model (3DMCPOL): 3D effects on polarized visible reflectances of a cirrus cloud,” J. Quant. Spectrosc. Radiat. Transfer 111 (1), 174–186 (2010).

    Article  ADS  Google Scholar 

  13. B. Fomin and V. Falaleeva, “Spectra of polarized thermal radiation in a cloudy atmosphere: Line-by-line and Monte Carlo model for passive remote sensing of cirrus and polar clouds,” J. Quant. Spectrosc. Radiat. Transfer 177, 301–317 (2016).

    Article  ADS  Google Scholar 

  14. T. Fauchez, C. Cornet, F. Szczap, P. Dubuisson, and T. Rosambert, “Impact of cirrus clouds heterogeneities on top-of-atmosphere thermal infrared radiation,” Atmos. Chem. Phys. 14 (11), 5599–5615 (2014).

    Article  ADS  Google Scholar 

  15. P. Yang, L. Bi, B. A. Baum, K. N. Liou, G. W. Kattawar, M. I. Mishchenko, and B. Cole, “Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 μm.,” J. Atmos. Sci. 70 (1), 330–347 (2013).

    Article  ADS  Google Scholar 

  16. S. Turquety, J. Hadji-Lazaro, C. Clerbaux, D. A. Hauglustaine, S. A. Clough, V. Casse, P. Schlussel, and G. Megie, “Operational trace gas retrieval algorithm for the Infrared Atmospheric Sounding Interferometer,” J. Geophys. Res., D 109 (21) (2004). doi 10.1029/2004JD004821

    Google Scholar 

  17. A. V. Boreskov and A. A. Kharlamov, CUDA fundamentals (DMK Press, Moscow, 2010) [in Russian].

    Google Scholar 

  18. L. Oreopoulos, E. Mlawer, J. Delamere, T. Shippert, J. Cole, B. Fomin, M. Iacono, Z. Jin, J. Manners, P. Raisanen, F. Rose, Y. Zhang, M. J. Wilson, and W. Rossow, “The continual intercomparison of Radiation Codes: Results from Phase I,” J. Geophys. Res., D 117 (6) (2012). doi 10.1029/2011JD016821

    Google Scholar 

  19. B. A. Fomin, “A k-distribution technique for radiative transfer simulation in inhomogeneous atmosphere: 1. FKDM, fast k-distribution model for the longwave,” J. Geophys. Res., D 109 (2) (2004). doi 10.1029/2003JD003802

    Google Scholar 

  20. T. A. Tarasova and B. A. Fomin, “The use of new parameterization for gaseous absorption in the CLIRAD-SW solar radiation code for models,” J. Atmos. Ocean. Technol. 24 (6), 1157–1162 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Falaleeva.

Additional information

Original Russian Text © V.A. Falaleeva, B.A. Fomin, 2017, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falaleeva, V.A., Fomin, B.A. Overcoming spectroscopic challenges in direct problems of satellite sounding of the atmosphere. Atmos Ocean Opt 30, 1–6 (2017). https://doi.org/10.1134/S1024856017010055

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856017010055

Keywords

Navigation