Skip to main content
Log in

Identification of atmospheric gravity waves in clouds over a water surface from MODIS imagery

  • Remote Sensing of Atmosphere, Hydrosphere, and Underlying Surface
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

We suggest an algorithm for identification of manifestations of atmospheric gravity waves in clouds over a water surface in MODIS images with a spatial resolution of 1000 m. The algorithm is based on the Viola–Jones method. The regions of the world where these phenomena are the most frequent are identified. Repeatability of the manifestations of atmospheric gravity waves in clouds throughout a year is estimated over the coasts of the Arabian Peninsula and Australia, Mozambique Channel, and the Kurile Islands. The cloud types formed by atmospheric gravity waves are determined. The results of their identification in full-sized MODIS images of different regions of the planet are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Aleksanin and V. Kim, “Automated detection of internal waves in satellite images and estimation of the mixed layer density,” Issled. Zemli Kosmosa, 1, 44–52 (2015).

    Google Scholar 

  2. V. B. Kashkin, “Interval gravity waves in the troposphere,” Atmos. Ocean. Opt. 27 (1), 1–9 (2014).

    Article  Google Scholar 

  3. A. P. Kamardin, S. L. Odintsov, and A. V. Skorokhodov, “Identification of internal gravity waves in the atmospheric boundary layer from sodar data,” Opt. Atmos. Okeana 27 (9), 812–818 (2014).

    Google Scholar 

  4. E. E. Gossard and U. K. Khuk, Waves in the Atmosphere (Mir, Moscow, 1978) [in Russian].

    Google Scholar 

  5. A. P. Kamardin, G. P. Kokhanenko, I. V. Nevzorova, and I. E. Penner, “Joint lidar and sodar investigations of the atmospheric boundary layers,” Opt. Atmos. Okeana 24 (6), 534–537 (2011).

    Google Scholar 

  6. J. Rodenas and R. Garello, “Internal wave detection and location in SAR images using wavelet transform,” IEEE Trans. Geosci. Remote Sens. 36 (5), 1494–1507 (1998).

    Article  ADS  Google Scholar 

  7. C. Jackson, “Internal wave detection using the Moderate Resolution Imaging Spectroradiometer (MODIS),” J. Geophys. Res. 112, C11012 (2007).

    Article  ADS  Google Scholar 

  8. N. F. Vel’tishchev and V. M. Stepanenko, Mesometeorological Processes (MGU, Moscow, 2006) [in Russian].

    Google Scholar 

  9. S. S. Zilitinkevich, T. Elperin, N. Kleorin, V. L’vov, and I. Rogachevskii, “Energy and flux-budget turbulence closure model for stably stratified flows. Part II: The role of internal gravity waves,” Bound.-Lay. Meteorol. 133 (2), 139–164 (2009).

    Article  ADS  Google Scholar 

  10. Y. Largeron, C. Staquet, and C. Chamel, “Characterization of oscillatory motion in the stable atmosphere of a deep valley,” Bound.-Lay. Meteorol. 148 (2), 439–459 (2013).

    Article  ADS  Google Scholar 

  11. A. N. Serebryanyi, “Slick and suloy generating processes in the sea. Internal Waves,” Sovremennye problemy distantsionnogo zondirovaniya Zemli Kosmosa, 9 (2), 275–286 (2012).

    Google Scholar 

  12. A. Yu. Ivanov, “Recognition of oceanic internal waves and atmospheric gravity waves in radar images of the sea surface,” O raspoznavanii poverkhnostnykh proyavlenii okeanskikh vnutrennikh voln i atmosfernykh gravitatsionnykh voln na radiolokatsionnykh izobrazheniyakh morskoi poverkhnosti, Issled. Zemli kosmosa, 1, 70–85 (2012).

    Google Scholar 

  13. D. Simonin, A. R. Tatnall, and I. S. Robinson, “The automated detection and recognition of internal waves,” Int. J. Remote Sens. 30 (17), 4581–4598 (2009).

    Article  ADS  Google Scholar 

  14. U. S. Atmosphere, http://modis-atmos.gsfc.nasa.gov.

  15. www. ssec.wisc.edu (access data 15.01.2016).

  16. M. A. German, Satellite Meteorology, (Gidrometeoizdat, Leningrad, 1975) [in Russian].

    Google Scholar 

  17. A. V. Skorokhodov, S. V. Aksenov, A. V. Aksenov, and D. N. Laikom, “The use of different computer systems for solution of the problem of neural network-based automatic classification of clouds in MODIS data,” Izv. Tomskogo Politekhnicheskogo Universiteta. Inzhiniring Georesursov 327 (1), 30–38 (2016).

    Google Scholar 

  18. P. Viola and M. J. Jones, “Robust real-time face detection,” Int. J. Comput. Vision. 57 (2), 137–154 (2004).

    Article  Google Scholar 

  19. R. Gonsales and R. Vuds, Digital Image Processing (Tekhnosfera, Moscow, 2005) [in Russian].

    Google Scholar 

  20. R. Schapire, Y. Freund, P. Barlett, and W. Lee, “Boosting the margin: A new explanation for the effectiveness of voting methods,” The Ann. Stat. 26 (5), 1651–1686 (1998).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Skorokhodov.

Additional information

Original Russian Text © V.G. Astafurov, A.V. Skorokhodov, 2017, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astafurov, V.G., Skorokhodov, A.V. Identification of atmospheric gravity waves in clouds over a water surface from MODIS imagery. Atmos Ocean Opt 30, 44–49 (2017). https://doi.org/10.1134/S102485601701002X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102485601701002X

Keywords

Navigation