Advertisement

Atmospheric and Oceanic Optics

, Volume 30, Issue 1, pp 44–49 | Cite as

Identification of atmospheric gravity waves in clouds over a water surface from MODIS imagery

  • V. G. Astafurov
  • A. V. Skorokhodov
Remote Sensing of Atmosphere, Hydrosphere, and Underlying Surface

Abstract

We suggest an algorithm for identification of manifestations of atmospheric gravity waves in clouds over a water surface in MODIS images with a spatial resolution of 1000 m. The algorithm is based on the Viola–Jones method. The regions of the world where these phenomena are the most frequent are identified. Repeatability of the manifestations of atmospheric gravity waves in clouds throughout a year is estimated over the coasts of the Arabian Peninsula and Australia, Mozambique Channel, and the Kurile Islands. The cloud types formed by atmospheric gravity waves are determined. The results of their identification in full-sized MODIS images of different regions of the planet are discussed.

Keywords

atmospheric gravity waves cloudiness Haar-like features pattern recognition satellite data stratification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. I. Aleksanin and V. Kim, “Automated detection of internal waves in satellite images and estimation of the mixed layer density,” Issled. Zemli Kosmosa, 1, 44–52 (2015).Google Scholar
  2. 2.
    V. B. Kashkin, “Interval gravity waves in the troposphere,” Atmos. Ocean. Opt. 27 (1), 1–9 (2014).CrossRefGoogle Scholar
  3. 3.
    A. P. Kamardin, S. L. Odintsov, and A. V. Skorokhodov, “Identification of internal gravity waves in the atmospheric boundary layer from sodar data,” Opt. Atmos. Okeana 27 (9), 812–818 (2014).Google Scholar
  4. 4.
    E. E. Gossard and U. K. Khuk, Waves in the Atmosphere (Mir, Moscow, 1978) [in Russian].Google Scholar
  5. 5.
    A. P. Kamardin, G. P. Kokhanenko, I. V. Nevzorova, and I. E. Penner, “Joint lidar and sodar investigations of the atmospheric boundary layers,” Opt. Atmos. Okeana 24 (6), 534–537 (2011).Google Scholar
  6. 6.
    J. Rodenas and R. Garello, “Internal wave detection and location in SAR images using wavelet transform,” IEEE Trans. Geosci. Remote Sens. 36 (5), 1494–1507 (1998).ADSCrossRefGoogle Scholar
  7. 7.
    C. Jackson, “Internal wave detection using the Moderate Resolution Imaging Spectroradiometer (MODIS),” J. Geophys. Res. 112, C11012 (2007).ADSCrossRefGoogle Scholar
  8. 8.
    N. F. Vel’tishchev and V. M. Stepanenko, Mesometeorological Processes (MGU, Moscow, 2006) [in Russian].Google Scholar
  9. 9.
    S. S. Zilitinkevich, T. Elperin, N. Kleorin, V. L’vov, and I. Rogachevskii, “Energy and flux-budget turbulence closure model for stably stratified flows. Part II: The role of internal gravity waves,” Bound.-Lay. Meteorol. 133 (2), 139–164 (2009).ADSCrossRefGoogle Scholar
  10. 10.
    Y. Largeron, C. Staquet, and C. Chamel, “Characterization of oscillatory motion in the stable atmosphere of a deep valley,” Bound.-Lay. Meteorol. 148 (2), 439–459 (2013).ADSCrossRefGoogle Scholar
  11. 11.
    A. N. Serebryanyi, “Slick and suloy generating processes in the sea. Internal Waves,” Sovremennye problemy distantsionnogo zondirovaniya Zemli Kosmosa, 9 (2), 275–286 (2012).Google Scholar
  12. 12.
    A. Yu. Ivanov, “Recognition of oceanic internal waves and atmospheric gravity waves in radar images of the sea surface,” O raspoznavanii poverkhnostnykh proyavlenii okeanskikh vnutrennikh voln i atmosfernykh gravitatsionnykh voln na radiolokatsionnykh izobrazheniyakh morskoi poverkhnosti, Issled. Zemli kosmosa, 1, 70–85 (2012).Google Scholar
  13. 13.
    D. Simonin, A. R. Tatnall, and I. S. Robinson, “The automated detection and recognition of internal waves,” Int. J. Remote Sens. 30 (17), 4581–4598 (2009).ADSCrossRefGoogle Scholar
  14. 14.
    U. S. Atmosphere, http://modis-atmos.gsfc.nasa.gov.Google Scholar
  15. 15.
    www. ssec.wisc.edu (access data 15.01.2016).Google Scholar
  16. 16.
    M. A. German, Satellite Meteorology, (Gidrometeoizdat, Leningrad, 1975) [in Russian].Google Scholar
  17. 17.
    A. V. Skorokhodov, S. V. Aksenov, A. V. Aksenov, and D. N. Laikom, “The use of different computer systems for solution of the problem of neural network-based automatic classification of clouds in MODIS data,” Izv. Tomskogo Politekhnicheskogo Universiteta. Inzhiniring Georesursov 327 (1), 30–38 (2016).Google Scholar
  18. 18.
    P. Viola and M. J. Jones, “Robust real-time face detection,” Int. J. Comput. Vision. 57 (2), 137–154 (2004).CrossRefGoogle Scholar
  19. 19.
    R. Gonsales and R. Vuds, Digital Image Processing (Tekhnosfera, Moscow, 2005) [in Russian].Google Scholar
  20. 20.
    R. Schapire, Y. Freund, P. Barlett, and W. Lee, “Boosting the margin: A new explanation for the effectiveness of voting methods,” The Ann. Stat. 26 (5), 1651–1686 (1998).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia
  2. 2.Tomsk State University of Control Systems and RadioelectronicsTomskRussia

Personalised recommendations