Advertisement

Atmospheric and Oceanic Optics

, Volume 29, Issue 6, pp 575–579 | Cite as

High-power gas-discharge excimer ArF, KrCl, KrF, and XeCl lasers on buffer-gas free gas mixtures

  • A. M. RazhevEmail author
  • E. S. Kargapoltsev
  • D. S. Churkin
Optical Sources and Receivers For Environmental Studies

Abstract

Results of experimental studies of the gas mixture (laser active medium) effect on the lasing energy and overall efficiency of excimer discharge ArF (193 nm), KrCl (222 nm) KrF (248 nm), and XeCl (308 nm) lasers operating in buffer-free gas mixtures are presented. The optimal (in terms of maximum radiation energy) ratios of the gas components of the excimer laser active media are found, at which efficient operation is achieved with a sufficiently high power of the laser radiation. It is confirmed experimentally that for the rare gas halide discharge pumped excimer lasers the presence of a buffer gas in the active medium is not required for efficient laser operation. For example, in two-component excimer laser gas mixtures, containing working rare and halogen-containing gases, laser pulse energy of up to 170 mJ and high pulsed power of laser radiation of up to 24 MW have been attained for the first time for pulsed gas-discharge excimer lasers operating on electronic transitions at excimer ArF*, KrCl*, KrF*, and XeCl* molecules pumped by a transverse electric volume discharge of a low-pressure buffer-free gas mixture. A overall efficiency maximum of up to 0.8% was experimentally attained for binary gas mixture of KrF and XeCl lasers.

Keywords

binary gas mixture excimer laser transverse electrical volume discharge buffer-free gas mixture low operating pressure laser energy overall efficiency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. D. Ray and A. J. Sedlacek, “Ultraviolet mini-raman lidar for stand-off, in-situ identification of chemical surface contaminants,” Rev. Sci. Instrum. 71 (9), 3485–3489 (2000).ADSCrossRefGoogle Scholar
  2. 2.
    J. S. Arthur and D. R. Mark, “Short-range, non-contact detection of surface contamination using raman lidar,” Proc. SPIE—Int. Soc. Opt. Eng. 4577, 95–104 (2001).Google Scholar
  3. 3.
    S. M. Bobrovnikov, E. V. Gorlov, and V. I. Zharkov, “Experimental estimation of Raman lidar sensitivity in the middle UV,” Atmos. Ocean. Opt. 26 (4), 320–325 (2013).CrossRefGoogle Scholar
  4. 4.
    M. L. Belov, V. A. Gorodnichev, and O. E. Pashenina, “Comparative analysis of the power of output signals of laser location and viewing systems in UV,” Nauka Obrazovanie, No. 8 (2013). http://technomag.bmstu.ru/doc/587120.html. Cited on September 6, 2015.Google Scholar
  5. 5.
    N. G. Zubrilin, A. I. Milanich, M. P. Chernomorets, and S. V. Yurchuk, “Lasing of XeCl, XeF, and KrF excimer molecules in two-component mixtures,” Sov. J. Quantum Electron. 15 (3), 423 (1985).ADSCrossRefGoogle Scholar
  6. 6.
    A. I. Fedorov, “A XeCl low-pressure longitudinal-discharge laser,” Atmos. Ocean. Opt. 7 (1), 53–56 (1994).Google Scholar
  7. 7.
    J. De la Rosa and H.-J. Eichler, “KrF laser without buffer gas excited in a capacitively coupled discharge tube,” Opt. Commun. 64 (3), 285–287 (1987).ADSCrossRefGoogle Scholar
  8. 8.
    N. G. Basov, V. S. Zuev, A. V. Kanaev, and L. D. Mikheev, “Lasing in optically excited KrCl,” Sov. J. Quantum Electron. 15 (11), 1449 (1985).ADSCrossRefGoogle Scholar
  9. 9.
    G. C. Tisone, A. K. Hays, and J. M. Hoffman, “109 Watt KrF and ArF molecular lasers,” Opt. Commun. 18 (1), 117–118 (1976).ADSCrossRefGoogle Scholar
  10. 10.
    A. M. Razhev, A. I. Shchedrin, A. G. Kalyuzhnaya, A. V. Ryabtsev, AND A. A. Zhupikov, “Effect of the pump intensity on the efficiency of a KrF excimer electric-discharge laser on a He–Kr–F2 mixture,” Quantum Electron. 34 (10), 901–906 (2004).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. M. Razhev
    • 1
    • 2
    Email author
  • E. S. Kargapoltsev
    • 1
  • D. S. Churkin
    • 1
    • 3
  1. 1.Institute of Laser Physics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State Technical UniversityNovosibirskRussia
  3. 3.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations