Advertisement

Atmospheric and Oceanic Optics

, Volume 29, Issue 6, pp 492–500 | Cite as

Optical-microphysical and physical-chemical characteristics of Siberian biomass burning: Experiments in Aerosol Chamber

  • O. B. PopovichevaEmail author
  • V. S. KozlovEmail author
  • R. F. Rakhimov
  • V. P. Shmargunov
  • E. D. Kireeva
  • N. M. Persiantseva
  • M. A. Timofeev
  • G. Engling
  • K. Eleftheriadis
  • E. Diapouli
  • M. V. Panchenko
  • R. Zimmermann
  • J. Schnelle-Kreis
Optics of Clusters, Aerosols, and Hydrosoles

Abstract

A series of experiments aimed at studying the effect of combustion regimes of typical Siberian biomasses on the optical, microphysical, and physical-chemical properties of smoke aerosols was performed in the Large Aerosol Chambe, Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences. A comprehensive data analysis showed that temperature regime of Siberian pine and coniferous tree burning has a key effect on the formation and time dynamics of all smoke characteristics. The polarization spectronephelometer measurements of light scattering are used to determine the size distributions and absorption indices of particles. Particles in the smoldering phase are weakly absorbing, but the mixed phase contains a strongly absorbing fine component produced in open flame phases. We studied microstructure characteristics of aerosols by the analysis of morphology and elemental composition. Groups of soot and organic particles were determined as micromarkers of emissions in open flaming and smoldering phases, respectively. The organic and elemental carbon contents, origin and concentration of chemical compounds in the water-soluble ion fraction exhibit a strong dependence on the combustion phase. Sugar anhydride (levoglucosan) was determined in the smoldering phase as a stable molecular marker of Siberian pine burning. A number of specific markers of coniferous wood burning were identified among the chemical compounds. Smoke aging is accompanied by condensation of organic and inorganic compounds, transformation of aerosol surface chemistry, and the formation of the group of potassium-rich particles, all demonstrating the complexity and variability of the chemical composition and microstructure of atmospheric aerosol pollution during Siberian forest fires.

Keywords

smoldering open flaming mixed-phase burning Siberian biomasses Large Aerosol Chamber smokes smoke particle characteristics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. C. Lavoue, C. Liousse, H. Cachier, B. J. Stocks, and J. G. Goldammer, “Modelling of carbonaceous particles emitted by boreal and temperate wildfires at northern latitudes,” J. Geophys. Res., A 105 (D22), 26871–26890 (2000).ADSCrossRefGoogle Scholar
  2. 2.
    J.-D. Paris, A. Stohl, P. Nedelec, M. Yu. Arshinov, M.V. Panchenko, V. P. Shmargunov, K. S. Law, B. D. Belan, and P. Ciais, “Wildfire smoke in the Siberian Arctic in summer: Source characterization and plume evolution from airborne measurements,” Atmos. Chem. Phys., No. 9, 9315–9327 (2009).ADSCrossRefGoogle Scholar
  3. 3.
    E. Diapouli, O. Popovicheva, M. Kistler, S. Vratolis, N. Persiantseva, M. Timofeev, A. Kasper-Giebl, and K. Eleftheriadis, “Physicochemical characterization of aged biomass burning aerosol after long-range transport to Greece from large scale wildfires in Russia and surrounding regions, Summer 2010,” Atmos. Environ. 96, 393–404 (2014). doi 10.1016/j.atmosenv.2014.07.055ADSCrossRefGoogle Scholar
  4. 4.
    S. Agarwal, S. G. Aggarwal, K. Okuzawa, and K. Kawamura, “Size distribution of dicarboxylic acids, ketoacids, α-dicarbonyls, sugars, WSOC, OC, EC and inorganic ions in atmospheric particles over Northern Japan: Implication for long-range transport of Siberian biomass burning and East Asia polluted aerosols,” Atmos. Chem. Phys. 10, 5839–5858 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    J. Reid, R. Koppmann, T. Eck, and D. Eleuterio, “A review of biomass burning emissions. Part 2: Intensive physical properties of biomass burning particles,” Atmos. Chem. Phys. 5, 799–825 (2005). doi 10.5194/acp-5-799-2005ADSCrossRefGoogle Scholar
  6. 6.
    E. A. Bruns, M. Krapf, J. Orasche, Y. Huang, R. Zimmermann, L. Drinovec, G. Mocnik, I. El-Haddad, J. G. Slowik, J. Dommen, U. Baltensperger, and A. S. H. Prevot, “Characterization of primary and secondary wood combustion products generated under different burner loads,” Atmos. Chem. Phys. 5, 2825–2841 (2015).ADSCrossRefGoogle Scholar
  7. 7.
    M. Elsasser, C. Busch, J. Orasche, C. Schon, H. Hartmann, J. Schnelle-Kreis, and R. Zimmermann, “Dynamic changes of the aerosol composition and concentration during different burning phases of wood combustion,” Energy Fuels. 27 (8), 4959–4968 (2013).CrossRefGoogle Scholar
  8. 8.
    O. Popovicheva, M. Kistler, E. Kireeva, N. Persiantseva, M. Timofeev, V. Kopeikin, and A. Kasper-Giebl, “Physicochemical characterization of smoke aerosol during large-scale wildfires: Extreme event of August 2010 in Moscow,” Atmos. Environ. 96, 405–414 (2014). doi 10.1016/j.atmosenv.2014.03.026ADSCrossRefGoogle Scholar
  9. 9.
    V. S. Kozlov, M. V. Panchenko, and E. P. Yausheva, “Mass fraction of Black Carbon in submicron aerosol as an indicator of influence of smokes from remote forest fires in Siberia,” Atmos. Environ. 42 (11), 2611–2620 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    M. V. Panchenko, M. A. Sviridenkov, S. A. Terpugova, and V. S. Kozlov, “Active spectral nephelometry as a method for the study of submicron atmospheric aerosols,” Int. J. Remote Sens. 29 (9), 2567–2583 (2008).ADSCrossRefGoogle Scholar
  11. 11.
    V. S. Kozlov, M. V. Panchenko, and E. P. Yausheva, “Diurnal behavior of the submicron aerosol and Black Carbon in the ground layer,” Atmos. Ocean. Opt. 24 (1), 30–38 (2011).CrossRefGoogle Scholar
  12. 12.
    O. B. Popovicheva, E. D. Kireeva, M. A. Timofeev, N. K. Shoniya, and V. P. Mogil’nikov, “Carbonaceous aerosols of aviation and shipping emission,” Izv., Atmos. Ocean. Phys. 46 (3), 339–346 (2010).CrossRefGoogle Scholar
  13. 13.
    J. Orasche, J. Schnelle-Kreis, C. Schoen, H. Hartmann, H. Ruppert, J. M. Arteaga-Salas, and R. Zimmermann, “Comparison of emissions from wood combustion. Part 2: Impact of combustion conditions on emission factors and characteristics of particle-bound organic species and polycyclic aromatic hydrocarbon (PAH)-related toxicological potential,” Energy Fuels 27 (3), 1482–1491 (2013).CrossRefGoogle Scholar
  14. 14.
    Y. N. Samsonov, V. A. Ivanov, D. J. McRae, and S. P. Baker, “Chemical and dispersal characteristics of particulate emissions from forest fires in Siberia,” Int. J. Wildland Fire 21 (7), 818–827 (2012).CrossRefGoogle Scholar
  15. 15.
    G. Engling, J. J. Lee, Hao-Jyun Sie, Yi-Chih Wu, and I. Yet-Pole, “Anhydrosugar characteristics in biomass smoke aerosol-case study of environmental influence on particle-size of rice straw burning aerosol,” J. Aerosol Sci. 56, 2–14 (2013). doi 10.1016/j.jaerosci.2012.10.001CrossRefGoogle Scholar
  16. 16.
    F. Reisen, S. M. Duran, M. Flannigan, C. Elliott, and K. Rideout, “Wildfire smoke and public health risk,” Int. J. Wildland Fire 24 (8), 1029–1044 (2015).CrossRefGoogle Scholar
  17. 17.
    A. K. Bolling, A. I. Totlandsdal, G. Sallsten, A. Braun, R. Westerholm, C. Bergvall, J. Boman, H. J. Dahlman, M. Sehlstedt, F. Cassee, T. Sandstrom, P. E. Schwarze, and J. I. Herseth, “Wood smoke particles from different combustion phases induce similar pro-inflammatory effects in a co-culture of monocyte and pneumocyte cell lines,” Part. Fibre Toxicol. 9, 45–60 (2012).CrossRefGoogle Scholar
  18. 18.
    V. S. Kozlov, E. P. Yausheva, S. A. Terpugova, M. V. Panchenko, D. G. Chernov, and V. P. Shmargunov, “Optical-microphysical properties of smoke haze from Siberian forest fires in summer 2012,” Int. J. Remote Sens. 35 (15), 5722–5741 (2014).Google Scholar
  19. 19.
    R. Hopkins, K. Levis, Y. Desyaterik, Z. Wang, A. V. Tivanski, W. P. Arnott, A. Laskin, and M. K. Gilles, “Correlation between optic, chemical and physical properties of biomass burn aerosols,” Geophys. Res. Lett. 34, L18806 (2007). doi 10.1029/2007GL030502ADSCrossRefGoogle Scholar
  20. 20.
    V. S. Kozlov, M. V. Panchenko, and A. G. Tumakov, “Influence of regimes of burning hydrocarbon fuels on the optical properties of smoke aerosols,” Atmos. Ocean. Opt. 6 (10), 733–738 (1993).Google Scholar
  21. 21.
    V. S. Kozlov and M. V. Panchenko, “Investigation of optical characteristics and particle-size distribution of wood-smoke aerosols,” Combust., Explos. Shock Waves 32 (5), 577–588 (1996).CrossRefGoogle Scholar
  22. 22.
    O. B. Popovicheva, V. S. Kozlov, G. Engling, E. Diapouli, N. M. Persiantseva, M. A. Timofeev, T.-S. Fan, D. Saraga, and K. Eleftheriadis, “Small-scale study of Siberian biomass burning: I. Smoke microstructure,” Aerosol Air Qual. Res. 15, 117–128 (2015). doi 10.4209/aaqr.2014.09.0206Google Scholar
  23. 23.
    R. F. Rakhimov, V. S. Kozlov, and V. P. Shmargunov, “Time dynamics of the complex refractive index and particle microstructure according to data of spectronephelometer measurements in mixedcomposition smokes,” Atmos. Ocean. Opt. 25 (1), 51–61 (2012).CrossRefGoogle Scholar
  24. 24.
    R. F. Rakhimov and E. V. Makienko, “Some methodic additions to the solution of the inverse problem for the reconstruction of the parameters of the disperse structure of mixed smokes,” Atmos. Ocean. Opt. 23 (4), 259–265 (2010).CrossRefGoogle Scholar
  25. 25.
    O. B. Popovicheva, E. D. Kireeva, N. K. Shonija, M. Vojtisek-Lom, and J. Schwarz, “FTIR analysis of surface functionalities on particulate matter produced by off-road diesel engines operating on diesel and biofuel,” Environ. Sci. Pollut. Res. 22 (6), 4534–4544 (2015).CrossRefGoogle Scholar
  26. 26.
    Z. S. Zhang, G. Engling, C. Y. Chan, Y. H. Yang, M. Lin, S. Shi, J. He, Y. D. Li, and X. M. Wang, “Determination of isoprene-derived secondary organic aerosol tracers (2-methyltetrols) by HPAEC-PAD: Results from size-resolved aerosols in a tropical rainforest,” Atmos. Environ. 70, 468–476 (2013). doi 10.1016/j.atmosenv.2013.01.020ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • O. B. Popovicheva
    • 1
    Email author
  • V. S. Kozlov
    • 2
    Email author
  • R. F. Rakhimov
    • 2
  • V. P. Shmargunov
    • 2
  • E. D. Kireeva
    • 1
  • N. M. Persiantseva
    • 1
  • M. A. Timofeev
    • 1
  • G. Engling
    • 3
  • K. Eleftheriadis
    • 4
  • E. Diapouli
    • 4
  • M. V. Panchenko
    • 2
  • R. Zimmermann
    • 5
    • 6
    • 7
  • J. Schnelle-Kreis
    • 6
    • 7
  1. 1.Skobeltsyn Research Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia
  2. 2.V. E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia
  3. 3.National Tsing Hua UniversityHsinchuTaiwan
  4. 4.Institute of Nuclear and Radiological Science & Technology, Energy & Safety N.C.S.R. “Demokritos”Environmental Radioactivity LaboratoryAttikiGreece
  5. 5.Joint Mass Spectrometry CenterCooperation Group Comprehensive Molecular Analytics, Helmholtz Zentrum MuenchenNeuherbergGermany
  6. 6.Joint Mass Spectrometry Center, Chair of Analytical ChemistryInstitute of Chemistry University of RostockRostockGermany
  7. 7.Helmholtz Virtual Institute of Complex Molecular Systems in Environmental Health (HICE)RostockGermany

Personalised recommendations