Advertisement

Atmospheric and Oceanic Optics

, Volume 29, Issue 6, pp 526–532 | Cite as

Studying the accuracy of the algorithm for retrieving the surface albedo with high spatial resolution from a fragment of a satellite image

  • O. V. NikolaevaEmail author
Remote Sensing of Atmosphere, Hydrosphere, and Underlying Surface
  • 19 Downloads

Abstract

An efficient algorithm for retrieving the albedo of a spatially inhomogeneous Lambertian surface from values of reflectance of solar radiation reflected from the “atmosphere–underlying surface” system is presented. The algorithm relies on the reflectance representation in the problem with an arbitrary surface albedo in terms of reflectances in problems for the same atmosphere with model underlying surfaces. Results of solving the model problems are presented. They demonstrate the possibility to use the algorithm in processing data of high spatial resolution (up to 15 m).

Keywords

atmospheric correction reflectance high spatial resolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. J. Diner, J. V. Martonchik, Ch. Borel, S. A. W. Gerstl, H. R. Gordon, Y. Knyazikhin, R. Myneni, B. Pinty, and M. M. Verstraete, Multi-Angle Imaging Spectro-Radiometer. Level 2 Surface Retrieval Algorithm Theoretical Basis (California Institute of Technology, Pasadena, 1999).Google Scholar
  2. 2.
    R. C. Levy, L. R. S. Mattoo, E. Vermote, and Y. J. Kaufman, “Second-generation algorithm for retrieving aerosol properties over land from MODIS spectral reflectance,” J. Geophys. Res. 112, D13211 (2007).ADSGoogle Scholar
  3. 3.
    E. F. Vermote and A. Vermeulen, Atmospheric Correction Algorithm: Spectral Reflectances (Mod09). Algorithm Technical Background Document (University of Maryland, Maryland, 1999).Google Scholar
  4. 4.
    M. V. Tarasenkov and V. V. Belov, “Software package for reconstructing properties of the Earth’s surface in the visible and UV ranges,” Atmos. Oceanic Opt. 28 (1), 89–94 (2015).CrossRefGoogle Scholar
  5. 5.
    V. V. Belov and M. V. Tarasenkov, “On the accuracy and operation speed of RTM algorithms for atmospheric correction of satellite images in the visible and UV ranges,” Atmos. Ocean. Opt. 27 (1), 54–61 (2014).CrossRefGoogle Scholar
  6. 6.
    A. I. Lyapustin, Y. Wang, I. Laszlo, T. Hilker, F. G. Hall, P. J. Sellers, C. J. Tucker, and S. V. Korkin, “Multi-angle implementation of atmospheric correction for MODIS (MAIAC). 3. Atmospheric correction,” Remote Sens. Environ. 127, 385–393 (2012).CrossRefGoogle Scholar
  7. 7.
    J. L. Roujean, M. Leroy, and P. Y. Deschamps, “A bidirectional reflectance model of the Earth’s surface for the correction of remote sensing data,” J. Geophys. Res., D 97 (18), 20455–20468 (1992).ADSCrossRefGoogle Scholar
  8. 8.
    F. M. Breon and E. Vermote, “Correction of MODIS surface reflectance time series for BRDF effects,” Remote Sens. Environ. 125, 1–9 (2012).CrossRefGoogle Scholar
  9. 9.
    O. V. Nikolaeva, “New algorithm for retrieval of the surface albedo from satellite sounding data,” Atmos. Ocean. Opt. 29 (4), 342–347 (2016).CrossRefGoogle Scholar
  10. 10.
    A. M. Sayer, A. Smirnov, N. C. Hsu, and B. N. Holben, “A pure marine aerosol model, for use in remote sensing applications,” J. Geophys. Res. 117, D05213 (2012). doi 10.1029/2011JD016689ADSGoogle Scholar
  11. 11.
    O. V. Nikolaeva, L. P. Bass, and V. S. Kuznetsov, “Raduga-6—software for solution of stationary and nonstationary radiation transfer equations in 1D-, 2D-, and 3D regions,” in Abstracts of Intern. Symp. “Atmospheric Radiation and Dynamics” (St. Petersburg, 2011), pp. 81–82. URL: http://www.rrc.phys.spbu.ru/msard11/thesis_11.pdf.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Keldysh Institute of Applied MathematicsRussian Academy of SciencesMoscowRussia

Personalised recommendations