Atmospheric and Oceanic Optics

, Volume 29, Issue 6, pp 516–525 | Cite as

Multifrequency lidar sensing of atmospheric aerosol under conditions of information uncertainty

  • S. A. LysenkoEmail author
  • M. M. KugeikoEmail author
  • V. V. Khomich
Remote Sensing of Atmosphere, Hydrosphere, and Underlying Surface


A method is proposed for solving the inverse problem in multifrequency lidar sensing of the atmospheric aerosol. The method allows retrieving the spatial distribution of volume concentrations of aerosol components, the aerosol particle size distribution integral over the sensing path, and the complex refractive index of the particles, without any additional data for the lidar calibration and supplement of the inverse problem definition. The method is based on the assumption that the average sizes, their variances, and the complex refractive indices for the particles of each aerosol component do not change along the sensing path, and the number of the lidar spectral channels is greater than the number of aerosol components. In this case, the system of equations for the spectral-spatial readings of the lidar signal becomes overdetermined, and its numerical solution allows deriving not only the microphysical parameters of the aerosol, but also the lidar calibration constants at operational wavelengths. Examples of processing the elastic and Raman scattering lidar signals in a model aerodispersive medium at the wavelengths λ0 = 0.355, 0.532, and 1.064 μm and λR = 0.387 and 0.607 μm, respectively, are presented. It is shown that microphysical parameters of the fine aerosol component (with particle sizes less than 1–2 μm) can be retrieved from the signals with an error less than 10%, and the error in retrieving the microphysical parameters of coarse particles depends strongly on their contribution to the total medium transmission. The aerosol extinction and backscattering coefficients calculated on the basis of the aerosol microphysical parameters retrieved differ from their actual values by a few percent.


aerosol optical parameters microphysical parameters multifrequency sensing inverse problem calibration-free method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. F. Loginov, Global and Regional Climate Changes: Causes and Consequences (TetraSistems, Minsk, 2008) [in Russian].Google Scholar
  2. 2.
    K. Ya. Kondrat’ev, L. S. Ivlev, and V. F. Krapivin, Properties, Formation, and Consequences of the Effects of Atmospheric Aerosols: From Nano-to Global Scales (VVM, St. Petersburg, 2007) [in Russian].Google Scholar
  3. 3.
    A. S. Ginzburg, D. P. Gubanova, and V. M. Minashkin, “Effect of natural and anthropogenic aerosols on the clobal and regional climate,” Ros. Khim. Zh. LII (5), 112–119 (2008).Google Scholar
  4. 4.
    A. P. Chaykovskii, A. P. Ivanov, Yu. S. Balin, A. V. El’nikov, G. F. Tulinov, I. I. Plyusnin, O. A. Bukin, and B. B. Chen, “CIS-LiNet lidar network for monitoring aerosol and ozone: Methodology and instrumentation,” Atmos. Ocean. Opt. 18 (12), 958–964 (2005).Google Scholar
  5. 5.
    G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linné, A. Ansmann, J. Bösenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: Towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Technol. 7 (8), 2389–2409 (2014).CrossRefGoogle Scholar
  6. 6.
    B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A federate instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66 (1), 1–16 (1988).CrossRefGoogle Scholar
  7. 7.
    V. E. Zuev and I. E. Naats, Inverse Problems of Laser Sounding of the Atmosphere (Nauka, Novosibirsk, 1982) [in Russian].Google Scholar
  8. 8.
    G. M. Krekov, S. I. Kavkyanov, and M. M. Krekova, Interpretation of Optical Atmosphere-Sounding Signals (Nauka, Novosibirsk, 1987) [in Russian].Google Scholar
  9. 9.
    V. A. Kovalev and W. E. Eichinger, Elastic Lidar: Theory, Practice, and Analysis Methods (John Wiley & Sons, New Jersey, 2004).CrossRefGoogle Scholar
  10. 10.
    A. D. Ershov, Yu. S. Balin, and S. V. Samoilova, “Lidar data inversion when studying optical characteristics of a weakly turbid atmosphere,” Atmos. Ocean. Opt. 15 (10), 810–815 (2002).Google Scholar
  11. 11.
    S. V. Samoilova, Yu. S. Balin, G. P. Kokhanenko, and I. E. Penner, “Investigations of the vertical distribution of troposphere aerosol layers based on the data of multifrequency raman lidar sensing. Part 1. Methods of Optical parameter retrieval,” Atmos. Ocean. Opt. 22 (3), 302–315 (2009).CrossRefGoogle Scholar
  12. 12.
    S. A. Lysenko and M. M. Kugeiko, “Method for the determination of the concentration of the respirable atmospheric aerosol fraction from the data of three-frequency lidar sensing,” Atmos. Ocean. Opt. 23 (3), 222–228 (2010).CrossRefGoogle Scholar
  13. 13.
    S. A. Lysenko and M. M. Kugeiko, “Retrieval of optical and microphysical characteristics of postvolcanic stratospheric aerosol from the results of three-frequency lidar sensing,” Atmos. Ocean. Opt, Moscow, 2011), 24 (5), 466–477 (2011) [in Russian].CrossRefGoogle Scholar
  14. 14.
    C. Böckmann, U. Wandinger, A. Ansmann, J. Bösenberg, V. Amiridis, A. Boselli, A. Delaval, F. De Tomasi, M. Frioud, I. V. Grigorov, A. Hagard, M. Horvat, M. Iarlori, L. Komguem, S. Kreipl, G. Larcheveque, V. Matthias, A. Papayannis, G. Pappalardo, F. Rocadenbosch, António Rodrigues J., Schneider J., Shcherbakov V., Wiegner M., “Aerosol lidar intercomparison in the framework of the EARLINET project. 2. Aerosol backscatter algorithms,” Appl. Opt. 43 (4), 977–989 (2004).ADSCrossRefGoogle Scholar
  15. 15.
    S. A. Lysenko, M. M. Kugeiko, and V. V. Khomich, “Technique for determining mass concentrations of aerosol fractions in the surface air from multifrequency lidar sounding data,” Atmos. Ocean. Opt. 28 (5), 455–465 (2015).CrossRefGoogle Scholar
  16. 16.
    S. A. Lisenko, M. M. Kugeiko, and V. V. Khomich, “Multifrequency lidar sounding of air pollution by particulate matter with separation into respirable fractions,” Atmos. Ocean. Opt. 29 (3), 288–297 (2016).CrossRefGoogle Scholar
  17. 17.
    D. Müller, C. Bockmann, A. Kolgotin, L. Schneidenbach, E. Chemyakin, J. Rosemann, P. Znak, and A. Romanov, “Microphysical particle properties derived from inversion algorithms developed in the framework of EARLINET,” Atmos. Meas. Technol. Discuss. 8 (12), 12823–12885 (2014).CrossRefGoogle Scholar
  18. 18.
    A. Chaikovsky, A. Ivanov, Yu. Balin, A. Elnikov, G. Tulinov, J. Plusnin, O. Bukin, and B. Chen, “Lidar network CIS-LiNet for monitoring aerosol and ozone in CIS regions,” Proc. SPIE 6160 ((9), 616035 (2006).CrossRefGoogle Scholar
  19. 19.
    J.-C. Raut and P. Chazette, “Retrieval of aerosol complex refractive index from a synergy between lidar, sunphotometer and in situ measurements during LISAIR experiment,” Atmos. Chem. Phys. 7 (11), 2797–2815 (2007).ADSCrossRefGoogle Scholar
  20. 20.
    A. Chaikovsky, O. Dubovik, B. Holben, A. Bril, P. Goloub, D. Tanré, G. Pappalardo, U. Wandinger, L. Chaikovskaya, S. Denisov, Y. Grudo, A. Lopatin, Y. Karol, T. Lapyonok, V. Amiridis, A. Ansmann, A. Apituley, L. Allados-Arboledas, I. Binietoglou, A. Boselli, G. D' Amico, V. Freudenthaler, D. Giles, M. J. Granados-Munoz, P. Kokkalis, D. Nicolae, S. Oshchepkov, A. Papayannis, M. R. Perrone, A. Pietruczuk, F. Rocadenbosch, M. Sicard, I. Slutsker, C. Talianu, F. De Tomasi, A. Tsekeri, J. Wagner, and X. Wang, “Lidar-Radiometer Inversion Code (LIRIC) for the retrieval of vertical aerosol properties from combined lidar/radiometer data: Development and distribution in EARLINET,” Atmos. Meas. Technol. Discuss. 8 (12), 12759–12822 (2015).ADSCrossRefGoogle Scholar
  21. 21.
    I. Binietoglou, S. Basart, L. Alados-Arboledas, V. Amiridis, A. Argyrouli, H. Baars, J. M. Baldasano, D. Balis, L. Belegante, J. A. Bravo-Aranda, P. Burlizzi, V. Carrasco, A. Chaikovsky, A. Comerón, G. D’Amico, M. Filioglou, M. J. Granados-Muñoz, J. L. Guerrero-Rascado, L. Ilic, P. Kokkalis, A. Maurizi, L. Mona, F. Monti, C. Munoz-Porcar, D. Nicolae, A. Papayannis, G. Pappalardo, G. Pejanovic, S. N. Pereira, M. R. Perrone, A. Pietruczuk, M. Posyniak, F. Rocadenbosch, A. Rodríguez-Gómez, M. Sicard, N. Siomos, A. Szkop, E. Terradellas, A. Tsekeri, A. Vukovic, U. Wandinger, and J. Wagner, “A methodology for investigating dust model performance using synergistic EARLINET/AERONET dust concentration retrievals,” Atmos. Meas. Technol. 8 (9), 3577–3600 (2015).CrossRefGoogle Scholar
  22. 22.
    A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31 (33), 7113–7131 (1992).ADSCrossRefGoogle Scholar
  23. 23.
    F. X. Kneizys, L. W. Abreu, G. P. Anderson, J. H. Chetwynd, E. P. Shettle, A. Berk, L. S. Bernstein, D.C. Robertson, P. Acharya, L. S. Rothman, J. E. A. Selby, W. O. Gallery, and S. A. Clough, The MODTRAN 2/3 Report and LOWTRAN 7 Model (Ontar Corporation, North Andover, 1996).Google Scholar
  24. 24.
    G. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, New York, 1983).Google Scholar
  25. 25.
    A. H. Omar, D. Winker, and J. Won, “Aerosol models for the CALIPSO lidar inversion algorithms,” Proc. SPIE 5240, 153–164 (2003).ADSCrossRefGoogle Scholar
  26. 26.
    L. Jun and L. Daren, “Nonlinear retrieval of atmospheric ozone profile from solar backscatter ultraviolet measurements: Theory and simulation,” Adv. Atmos. Sci. 14 (4), 473–480 (1997).CrossRefGoogle Scholar
  27. 27. Scholar
  28. 28.
    World Climate Research Programme: A Preliminary Cloudless Standard Atmosphere for Radiation Computation. Report WCP-112 (WMO, Geneva, 1986).Google Scholar
  29. 29.
    M. R. Perrone, P. Burlizzi, F. De Tomasi, and A. Chaikovsky, “Profiling of fine-and coarse-mode particles with LIRIC (LIdar/Radiometer Inversion Code),” Atmos. Meas. Technol. Discuss. 7 (8), 8881–8926 (2014).ADSCrossRefGoogle Scholar
  30. 30.
    J. Jung, H. Lee, Y. J. Kim, X. Liu, Y. Zhang, M. Hu, and N. Sugimoto, “Optical properties of atmospheric aerosols obtained by in situ and remote measurements during 2006 campaign of air quality research in Beijing (CAREBeijing-2006),” J. Geophys. Res. D 114 (2) D00G02 (2009).ADSGoogle Scholar
  31. 31.
    A. Lopatin, O. Dubovik, A. Chaikovsky, P. Goloub, T. Lapyonok, D. Tanre, and P. Litvinov, “Enhancement of aerosol characterization using synergy of lidar and sun-photometer coincident observations: The GARRLiC algorithm,” Atmos. Meas. Technol. 6 (8), 2065–2088 (2013).CrossRefGoogle Scholar
  32. 32.
    I. Binietoglou, A. Chaikovsky, G. D’Amico, N. Papagiannopoulos, and G. Pappalardo, Scholar
  33. 33.
    W. R. Fenner, H. A. Hyatt, J. M. Kellam, and S. P. S. Porto, “Raman cross-section of some simple gases,” J. Opt. Soc. Amer. 63 (1), 73–77 (1973).ADSCrossRefGoogle Scholar
  34. 34.
    S. A. Lysenko and M. M. Kugeiko, “Determination of the concentration of aerosol particles in a vertical atmospheric column from satellite measurements of the spectral optical depth,” J. Appl. Spectrosc. 78 (5), 738–745 (2011).ADSCrossRefGoogle Scholar
  35. 35.
    S. A. Lysenko and M. M. Kugeiko, “Retrieval of the mass concentration of dust in industrial emissions from optical sensing data,” Atmos. Ocean. Opt. 25 (1), P. 35–43 (2012).CrossRefGoogle Scholar
  36. 36.
    M. I. Mishchenko, B. Cairns, J. E. Hansen, L. D. Travis, R. Burg, Y. J. Kaufman, J. V. Martins, and E. P. Shettle, “Monitoring of aerosol forcing of climate from space: Analysis of measurement requirements,” J. Quant. Spectrosc. Radiat. Transfer. 88 (1–3), 149–161 (2004).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Belarusian State UniversityMinskBelarus

Personalised recommendations