Atmospheric and Oceanic Optics

, Volume 29, Issue 6, pp 483–491 | Cite as

The mode conversion of structurally stable vector beams propagating through free space optical channels

  • T. I. ArsenyanEmail author
  • E. A. Babanin
  • O. M. Vokhnik
  • A. M. Zotov
  • A. F. Mardanov
  • N. A. Suhareva
Optics of Stochastically-Heterogeneous Media


The reconstruction of the spatial intensity distribution of structurally stable axially symmetrical beams in free space optical data transmitting channels has been studied experimentally. The structure transformation invariants of а beam as а space code bearer are discussed. The correlation and dispersion parameters of a random process of optical density modulation are estimated; a possibility of their multiple differences in different directions perpendicular to the beam axis is shown.


structurally stable beams mode converter Ince–Gaussian beams free space optical channel 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. A. Leontovich and V. A. Fok, “Experiments on radiowave propagation,” Zh. Eksp. Teor. Fiz. 16 (7), 557–573 (1946).Google Scholar
  2. 2.
    E. G. Abramochkin and V. G. Volostnikov, Modern Optics of Gaussian Beams (Fizmatlit, Moscow, 2010) [in Russian].Google Scholar
  3. 3.
    V. G. Volostnikov, Methods for Synthesis of Coherent Light Fields (Fizmatlit, Moscow, 2015) [in Russian].Google Scholar
  4. 4.
    M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1964).Google Scholar
  5. 5.
    E. Titchmarsh, Theory of Functions (Nauka, Moscow, 1980) [in Russian].zbMATHGoogle Scholar
  6. 6.
    A. M. Goncharenko, Gaussian Light Beams (URSS, Moscow, 2005) [in Russian].Google Scholar
  7. 7.
    L. D. Landau and E. M. Lifshits, Quantum Mechanics, Nonrelativistic Theory (Fizmatlit, Moscow, 2004) [in Russian].Google Scholar
  8. 8.
    M. A. Bandres and J. C. Gutierrez-Vega, “Ince–Gaussian Beams,” Opt. Lett. 29 (2), 144–146 (2004).ADSCrossRefGoogle Scholar
  9. 9.
    M. A. Bandres and J. C. Gutierrez-Vega, “Ince–Gaussian modes of the paraxial wave equation and stable resonators,” J. Opt. Soc. Amer., A 21 (5), 873–880 (2004).ADSCrossRefGoogle Scholar
  10. 10.
    Shuo Han, Yanqing Liu, Fang Zhang, Ying Zhou, Zhengping Wang, and Xinguang Xu, “Direct generation of subnanosecond Ince–Gaussian modes in microchip laser,” IEEE Photon. J. 7 (1), 4500206 (2015).CrossRefGoogle Scholar
  11. 11.
    A. T. O’Neil and J. Courtial, “Mode transformations in terms of the constituent Hermite-Gaussian or Laguerre–Gaussian modes and the variable-phase mode converter,” Opt. Commun. 181 (1–3), 35–45 (2000).ADSCrossRefGoogle Scholar
  12. 12.
    G. Zhou and J. Zheng, “Vectorial structure of Hermite–Laguerre–Gaussian Beam in the far field,” Opt. Laser Technol. 40 (6), 858–863 (2008).ADSCrossRefGoogle Scholar
  13. 13.
    M. V. Berry, J. F. Nye, and F. J. Wright, “The elliptic umbilic diffraction catastrophe,” Phil. Trans. R. Soc., A 291 (1382), 453–484 (1979).ADSCrossRefGoogle Scholar
  14. 14.
    V. I. Arnol’d, A. N. Varchenko, and S. M. Gusein-Zade, Properties of Differentiated Transforms (MNTsNMO, Moscow, 2009) [in Russian].Google Scholar
  15. 15.
    M. A. Bandres and M. Guizar-Sicairos, “Paraxial group,” Opt. Lett. 34 (1), 13–15 (2009).ADSCrossRefGoogle Scholar
  16. 16.
    A.V. Getling, Rayleigh–Benard Convection: Structure and Dynamics (World Scientific Publishing, Singapore, 1996).zbMATHGoogle Scholar
  17. 17.
    T. I. Arsenyan, N. A. Suhareva, A. P. Sukhorukov, and A. A. Chugunov, “Scintillation index of the Gaussian beams propagating through the path with strong turbulence,” Mos. Univ. Phys. Bull. 69 (4), 308–317 (2014).ADSCrossRefGoogle Scholar
  18. 18.
    T. I. Arsenyan, A. L. Afanas’ev, V. A. Banakh, M. V. Pisklin, A. P. Rostov, and N. A. Suhareva, “Tensor analysis of the refraction distortion dynamics of the sounding beam,” Mos. Univ. Phys. Bull. 15 (6), 504–512 (2015).ADSCrossRefGoogle Scholar
  19. 19.
    T. I. Arsenyan, N. A. Suhareva, and A. P. Sukhorukov, “Turbulence-induced laser beam distortions in phase space,” Mos. Univ. Phys. Bull. 69 (1), 55–60 (2014).ADSCrossRefGoogle Scholar
  20. 20.
    Ting Xu and Shaomin Wang, “Propagation of Ince–Gaussian beams in a thermal lens medium,” Opt. Commun. 265 (1), 1–5 (2006).ADSCrossRefGoogle Scholar
  21. 21.
    H. Nadgaran and M. Servatkhah, “The effects of induced heat loads on the propagation of Ince–Gaussian beams,” Opt. Commun. 284 (22), 5329–5337 (2011).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • T. I. Arsenyan
    • 1
    Email author
  • E. A. Babanin
    • 1
  • O. M. Vokhnik
    • 1
  • A. M. Zotov
    • 1
  • A. F. Mardanov
    • 1
  • N. A. Suhareva
    • 1
  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations