Atmospheric and Oceanic Optics

, Volume 29, Issue 5, pp 395–403 | Cite as

Dynamics of light structures during filamentation of femtosecond laser pulses in air

  • A. A. ZemlyanovEmail author
  • A. D. Bulygin
  • Yu. E. Geints
  • O. V. Minina
Optical Waves Propagation


A model of single filamentation of a high-power ultrashort light pulse has been developed on the basis of evolutionary dependencies of phase and amplitude parameters of the light field found from the numerical solution of a nonlinear Schrödinger equation for air. A key role of aberration and diffraction effects during the formation of localized stable dynamic light structures near the propagation axis is shown. It is found that the angular divergence of the postfilamentation light channel decreases with an increase in the laser beam radius at a fixed peak pulse power and is saturated when the radius is greater than 1 mm.


self-focusing filamentation diffraction-beam tube post-filamentation channel 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    “Self-focusing: Past and present. Fundamentals and prospects,” in Topics in Applied Physics, Ed. by R.W. Boyd (Springer, Berlin, 2009), vol. 114, pp. 3–19.Google Scholar
  2. 2.
    S. V. Chekalin and V. P. Kandidov, “From self-focusing light beams to femtosecond laser pulse filamentation,” Phys.-Uspekhi 56 2, 123–140 (2013).ADSCrossRefGoogle Scholar
  3. 3.
    G. Mehain, A. Couairon, Y.-B. Andre, C. D’Amico, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, and R. Sauerbrey, “Long-range self-channeling of infrared laser pulses in air: A new propagation regime without ionization,” Appl. Phys., B 79, 379–382 (2004).CrossRefGoogle Scholar
  4. 4.
    J. Kasparian and J.-P. Wolf, “Physics and applications of atmospheric nonlinear optics and filamentation,” Opt. Express 16 1, 466–493 (2008).ADSCrossRefGoogle Scholar
  5. 5.
    V. D. Zvorykin, A. A. Ionin, A. O. Levchenko, L. V. Seleznev, L. V. Sinitsyn, I. V. Smetanin, N. N. Ustinovskii, and A. V. Shutov, “Extended plasma channels created by UV laser air and their application to control electric discharges,” Plasma Phys. Rep. 41 2, 112–146 (2015).ADSCrossRefGoogle Scholar
  6. 6.
    G. A. Askar’yan, “Effect of the gradient of intense electromagnetic beam field on electrons and atoms,” Zh. Eksp. Teor. Fiz. 42 6, 1567–1570 (1962).Google Scholar
  7. 7.
    H. Gao, W. Liu, and S. L. Chin, “Post-filamentation multiple light channel formation in air,” Laser Phys. 24 7, 055301 (2014).ADSCrossRefGoogle Scholar
  8. 8.
    J.-F. Daigle, O. G. Kosareva, N. A. Panov, T.-J. Wang, S. Hosseini, S. Yuan, G. Roy, and S. L. Chin, “Formation and evolution of intense, post-filamentation, ionization- free low divergence beams,” Opt. Commun. 284 14, 3601–3606 (2011).ADSCrossRefGoogle Scholar
  9. 9.
    A. A. Zemlyanov, A. D. Bulygin, and Yu. E. Geints, “Energy light structures during fentosecond laser radiation filamentation in air. To the 50th anniversary of the first paper about light self-focusing,” Atmos. Oceanic Opt. 27 6, 463–474 (2014).CrossRefGoogle Scholar
  10. 10.
    S. A. Akhmanov, A. P. Sukhorukov, and R. V. Khokhlov, “Self-focusing and diffraction of light in a nonlinear medium,” Sov. Phys. Uspekhi 10 5, 609–636 (1967).ADSCrossRefGoogle Scholar
  11. 11.
    V. N. Lugovoi and A. M. Prokhorov, “A possible explanation of the small scale self-focusing filaments,” JETP Lett. 7 5, 117–119 (1968).ADSGoogle Scholar
  12. 12.
    O. G. Kosareva, V. P. Kandidov, A. Brodeur, and S. Chin, “from filamentation in condensed media to filamentation in gases,” J. Nonlinear Opt. Phys. Mater. 6 4, 485–494 (1997).ADSCrossRefGoogle Scholar
  13. 13.
    W. Liu, J.-F. Gravel, F. Theberge, A. Becker, and S. L. Chin, “Background reservoir: Its crucial role for long-distance propagation of femtosecond laser pulses in air,” Appl. Phys., B 80 7, 857–860 (2005).ADSCrossRefGoogle Scholar
  14. 14.
    Zuoqiang Hao, Jie Zhang, Xin Lu, Tingting Xi, Zhe Zhang, and Zhaohua Wang, “Energy interchange between large-scale free propagating filaments and its background reservoir,” Opt. Soc. Amer. B 26 3, 499–502 (2009).ADSCrossRefGoogle Scholar
  15. 15.
    A. A. Zemlyanov, A. D. Bulygin, and Yu. E. Geints, “Diffraction optics of a light filament generated during self-focusing of a femtosecond laser pulse in air,” Atmos. Oceanic Opt. 25 2, 97–105 (2012).CrossRefGoogle Scholar
  16. 16.
    V. I. Talanov, “Self-focusing of wave beams in nonlinear media,” JETP Lett. 2 (5) 138–140 (1965).ADSGoogle Scholar
  17. 17.
    R. Y. Chiao, E. Garmire, and C. H. Townes, “Selftrapping of optical beams,” Phys. Rev. Lett. 13, 479–482 (1964).ADSCrossRefGoogle Scholar
  18. 18.
    A. L. Mikaelyan, “Optical wave guides with variable refractive index,” Opt. Spektrosk. 44 2, 370–378 (1978).ADSGoogle Scholar
  19. 19.
    A. L. Mikaelyan, “Stratified media in wave focusing,” Dokl. Akad. Nauk SSSR 81 4, 569–571 (1951).Google Scholar
  20. 20.
    Yu. A. Kravtsov and Yu. I. Orlov, “Caustics, catastrophes, and wave fields,” Sov. Phys. Uspekhi 26 12, 1038–1058 (1983).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    V. P. Kandidov, S. A. Shlenov, and O. G. Kosareva, “Filamentation of high-power femtosecond laser radiation,” Quantum Electron. 39 3, 205–228 (2009).ADSCrossRefGoogle Scholar
  22. 22.
    E. O. Smetanina, V. M. Kadan, I. V. Blonskyi, and V. P. Kandidov, “Dynamic lenses in femtoseond filament,” Appl. Phys. B 116 3, 755–762 (2014).ADSCrossRefGoogle Scholar
  23. 23.
    L. L. Tatarinova and M. E. Garcia, “Exact solutions of the Eikonal equations describing self-focusing in highly nonlinear geometrical optics,” Phys. Rev., A 78, 021806 (2008).ADSCrossRefGoogle Scholar
  24. 24.
    A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” JETP 50 5, 1393–1209 (1966).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. A. Zemlyanov
    • 1
    Email author
  • A. D. Bulygin
    • 1
  • Yu. E. Geints
    • 1
  • O. V. Minina
    • 1
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations