Atmospheric and Oceanic Optics

, Volume 29, Issue 5, pp 404–409 | Cite as

Infrared absorption spectra of CO2, C2H4, C2H6 in nanopores of SiO2/Al2O3 aerogel

  • T. M. PetrovaEmail author
  • Yu. N. Ponomarev
  • A. A. Solodov
  • A. M. Solodov
  • E. A. Glazkova
  • O. V. Bakina
  • M. I. Lerner
Spectroscopy of Ambient Medium


Transformation of C2H4, CO2 and C2H6 absorption spectra confined in nanopores of SiO2/Al2O3 aerogel is studied for the first time in comparison with the spectra of these molecules in the free state. It is shown that the integral intensities of confined C2H4 within 5700–6250 cm–1, CO2 within 4760–5160 cm–1, and C2H6 within 2830–3030 cm–1 are higher by 13.3, 15, and 18 times, respectively, than those of free gases.


aerogel nanopores absorption spectra C2H4 CO2 C2H6 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Solodov, T. M. Petrova, Yu. N. Ponomarev, and A. M. Solodov, “Influence of nanoconfinement on the rotational dependence of line half-widths for 2–0 band of carbon oxide,” Chem. Phys. Lett. 637, 18–21 (2015).ADSCrossRefGoogle Scholar
  2. 2.
    Yu. N. Ponomarev, T. M. Petrova, A. M. Solodov, and A. A. Solodov, “IR spectroscopy of water vapor confined in nanoporous silica aerogel,” Opt. Express 18 25, 26062–26067 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    Yu. N. Ponomarev, T. M. Petrova, A. M. Solodov, A. A. Solodov, and A. F. Danilyuk, “Experimental study by the IR spectroscopy method of the interaction between ethylene and nanopores of various densities,” Atmos. Ocean. Opt. 23 4, 266–269 (2010).CrossRefGoogle Scholar
  4. 4.
    T. E. Huber and C. A. Huber, ”Infrared absorption of H2 adsorbed on porous glass, silica gel, and MgO,” Appl. Phys., A. 51 2, 137–140 (1990).ADSCrossRefGoogle Scholar
  5. 5.
    N. Reta, A. Michelmore, C. Saint, and N. H. Voelcer, “Porous silicon membrane-modified electrodes for label-free voltammetric detection of MS2 bacteriophage,” Biosens. Bioelectron. 80 15, 47–53 (2016).CrossRefGoogle Scholar
  6. 6.
    F. Laborda, E. Bolea, G. Cepria, and M. S. Jimenez, J. Perez-Arantegui, and J. R. Castillo, “Detection, characterization and quantification of inorganic engineered nanomaterials: A review of techniques and methodological approaches for the analysis of complex samples,” Anal. Chim. Acta 904, 10–32 (2016).CrossRefGoogle Scholar
  7. 7.
    X. Zhuang, Y. Mai, D. Wu, F. Zhang, and X. Feng, “Two dimensional soft nanomaterials: A fascinating world of materials,” Adv. Mater. 27 3, 403–427 (2015).CrossRefGoogle Scholar
  8. 8.
    S. Azzouzi, H. K. Patra, M. B. Ali, M. N. Abbas, C. Dridi, A. Errachid, and A. P. F. Turner, “Citrateselective electrochemical µ-sensor for early stage detection of prostate cancer,” Sens. Actuators, B 228 (2), 335–346.Google Scholar
  9. 9.
    S. Banerjee, C. Kelly, J. P. Kerry, and D. B. Papkovsky, “High throughput non-destructive assessment of quality and safety of packaged food products using phosphorescent oxygen sensors,” Trends Food Sci. Technol. 50, 85–102 (2016).CrossRefGoogle Scholar
  10. 10.
    S. G. Chatteriee, S. Chatteriee, A. K. Ray, and A. K. Chakraborty, “Graphene-metal oxide nanohybrids for toxic gas sensor: A review,” Sens. Actuators, B 221, 1170–1181 (2015).CrossRefGoogle Scholar
  11. 11.
    J. Hu, F. Gao, Z. Zhao, S. Sang, P. Li, W. Zhang, X. Zhou, and Y. Chen, “Synthesis and characterization of cobalt-doped ZnO microstructures for methane gas sensing,” Appl. Surf. Sci. 363, 181–188 (2016).ADSCrossRefGoogle Scholar
  12. 12.
    N. W. Turner, M. Cauchi, E. V. Piletska, C. Preston, and S. A. Piletsky, “Rapid qualitative and quantitative analysis of opiates in extract of poppy head via FTIR and chemometrics: Towards in-field sensors,” Biosens. Bioelectron. 24 11, 3322–3328 (2009).CrossRefGoogle Scholar
  13. 13.
    A. Tricoli, M. Righettoni, and A. Teleki, “Semiconductor gas sensors: Dry synthesis and application,” Angew. Chem. Int. Ed. 49 42, 7632–7659 (2010).CrossRefGoogle Scholar
  14. 14.
    J. H. Jeun and S. H. Hong, “CuO-loaded nanoporous SnO2 films fabricated by anodic oxidation and RIE process and their gas sensing properties,” Sens. Actuators, B 151 1, 1–7 (2010).CrossRefGoogle Scholar
  15. 15.
    S. Bai, C. Sun, T. Guo, R. Luo, Y. Lin, A. Chen, L. Sun, and J. Zhang, “Low temperature electrochemical deposition of nanoporous ZnO thin films as novel NO2 sensors,” Electrochim. Acta 90, 530–534 (2013).CrossRefGoogle Scholar
  16. 16.
    A. Z. Sadek, J. G. Partridge, D. G. McCulloch, Y. X. Li, X. F. Yu, W. Wlodarski, and K. Kalantarzadeh, “Nanoporous TiO2 thin film based conductometric H2 sensor,” Thin Solid Films 518 4, 1294–1298 (2009).ADSCrossRefGoogle Scholar
  17. 17.
    C. Wang, X. Li, C. Feng, Y. Sun, and G. Lu, “Nanosheets assembled hierarchical flower-like WO3 nanostructures: Synthesis characterization, and their gas sensing properties,” Sens. Actuators, B 210, 75–81 (2015).CrossRefGoogle Scholar
  18. 18.
    A. V. Shaposhnik, A. A. Zvyagin, and S. N. Korchagina, “Chemisorption processes when detecting ammonia by a semiconductor sensor with participation of a microreagent,” Sorbtsionnye Khromatograficheskie Protsessy 12 2, 261–266 (2012).Google Scholar
  19. 19.
    K. L. Chen, G. J. Jiang, K. W. Chang, J. H. Chen, and C. H. Wu, “Gas sensing properties of indium-galliumzinc- oxide gas sensors in different light intensity,” Anal. Chem. Res. 4, 8–12 (2015).CrossRefGoogle Scholar
  20. 20.
    J. Kundu, F. Le, P. Nordlander, and N.J. Halas, “Surface enhanced infrared absorption (SEIRA) spectroscopy on nanoshell aggregate substrates,” Chem. Phys. Lett. 452 (2008).Google Scholar
  21. 21.
    So Young Kang, Il Cheol Jeon, and Kwan Kim, “Infrared absorption enhancement at silver colloidal particles,” Appl. Spectrosc. 52 2, 278–283 (1998).ADSCrossRefGoogle Scholar
  22. 22.
    P. R. Aravind, P. Mukundan, P. K. Pillai, and K. G. K. Warrier, “Mesoporous silica-alumina aerogels with high thermal pore stability through hybrid solgel route followed by subcritical drying,” Micropor. Mesopor. Mat. 96 1–3, 14–20 (2006).CrossRefGoogle Scholar
  23. 23.
    V. B. Fenelonov, Introduction in the Physical Chemistry of Supramolecular Structuring of Adsorbents and Catalysts (Publishing House of SB RAS, Novosibirsk, 2002) [in Russian].Google Scholar
  24. 24.
    R. H. Norton and R. Beer, “New apodizing functions for fourier spectrometry,” J. Opt. Soc. Amer. 66 3, 259–264 (1976).ADSCrossRefGoogle Scholar
  25. 25.
    Yu. N. Ponomarev, T. M. Petrova, A. M. Solodov, and A. A. Solodov, “Observation of a forbidden vibrational absorption band of H2 in nanoporous aerogel,” JETP Lett. 99 11, 619–621 (2014).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • T. M. Petrova
    • 1
    Email author
  • Yu. N. Ponomarev
    • 1
  • A. A. Solodov
    • 1
  • A. M. Solodov
    • 1
  • E. A. Glazkova
    • 2
    • 3
  • O. V. Bakina
    • 2
    • 3
  • M. I. Lerner
    • 2
    • 3
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia
  2. 2.Institute of Strength Physics and Materials ScienceTomskRussia
  3. 3.National Research Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations