Skip to main content
Log in

Spatial scales of coherence of diffraction-free beams in a turbulent atmosphere

  • Optics of Stochastically-Heterogeneous Media
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Coherent properties of diffraction-free optical beams propagating in a turbulent atmosphere are studied. The analysis is based on the solution of the equation for the second-order mutual coherence function of an optical radiation field. The behavior of the degree of coherence of the diffraction-free (cosine and fundamental Bessel) optical beams depending on the beam parameters and characteristics of the turbulent atmosphere is investigated. It turns out that the oscillating character of the degree of coherence of these beams is a fundamental property of diffraction-free beams, which is shown under weak fluctuations in a turbulent atmosphere. At high levels of fluctuations in a turbulent atmosphere, the degree of coherence of a diffraction-free cosine beam becomes closer to that of a plane wave, and of a diffraction-free fundamental Bessel beam, to a spherical wave. The analysis of two spatial scales of the degree of coherence of optical beams has shown that the integral scale of the degree of coherence for diffraction-free beams is a more representative characteristic than the coherence length; the former definitely correlates with optical radiation propagation conditions in a turbulent atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Allen, S. M. Barnett, and M. J. Padgett, Optical Angular Momentum (Institute of Physics, Bristol, 2003).

    Book  Google Scholar 

  2. D. L. Andrews, Structured Light and Its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces (Academic press, New York, 2008).

    Google Scholar 

  3. M. A. Mahmoud, M. Y. Shalaby, and D. Khalil, “Propagation of Bessel beams generated using finitewidth Durnin ring,” Appl. Opt. 52 2, 256–253 (2013).

    Article  ADS  Google Scholar 

  4. M. Ornigotti and A. Aiello, “Generalized Bessel beams with two indices,” Opt. Lett. 39 19, 5618–5621 (2014).

    Article  ADS  Google Scholar 

  5. V. A. Banakh and A. V. Falits, “Numerical simulation of propagation of laser beams formed by multielement apertures in a turbulent atmosphere under thermal blooming,” Atmos. Oceanic Opt. 26 6, 455–465 (2013).

    Article  Google Scholar 

  6. V. A. Banakh and A. V. Falits, “Efficiency of combined beam focusing under thermal blooming,” Atmos. Oceanic Opt. 27 3, 211–217 (2014).

    Article  Google Scholar 

  7. V. A. Banakh and A. V. Falits, “Turbulent broadening of Laguerre-Gaussian beam in the atmosphere,” Opt. Spectrosc. 117 6, 949–955 (2014).

    Article  ADS  Google Scholar 

  8. F. O. Fahrbach, V. Gurchenkov, K. Alessandri, P. Nassoy, and A. Rohrbach, “Self-reconstructing sectioned bessel beams offer submicron optical sectioning for large fields of view in light-sheet microscopy,” Opt. Express 21 9, 11425–11440 (2013).

    Article  ADS  Google Scholar 

  9. L. Gong, Y. Ren, G. Xue, Q. Wang, J. Zhou, M. Zhong, Z. Wang, and Y. Li, “Generation of nondiffracting Bessel beam using digital micromirror device,” Appl. Opt. 52 19, 4566–4575 (2013).

    Article  ADS  Google Scholar 

  10. Z. Xie, V. Armbruster, and T. Grosjean, “Axicon on a Gradient Index Lens (AXIGRIN): Integrated optical bench for Bessel beam generation from a point-like source,” Appl. Opt. 53 26, 6103–6107 (2014).

    Article  ADS  Google Scholar 

  11. C. Alyingoz, B. Yalizay, and S. Akturk, “Propagation characteristics of Bessel beams generated by continuous, incoherent light sources,” J. Opt. Soc. Amer., A 32 8, 1567–1575 (2015).

    Article  ADS  Google Scholar 

  12. P. Birch, I. Ituen, R. Young, and Ch. Chatwin, “Longdistance Bessel beam propagation through Kolmogorov turbulence,” J. Opt. Soc. Amer., A 32 11, 2066–2073 (2015).

    Article  ADS  Google Scholar 

  13. X. Wei, Ch. Liu, L. Niu, Z. Zhang, K. Wang, Z. Yang, and J. Liu, “Generation of arbitrary order Bessel beams via 3D printed axicons at the terahertz frequency range,” Appl. Opt. 54 36, 10641–10649 (2015).

    Article  ADS  Google Scholar 

  14. A. P. Kiselev, “Localized light waves: Paraxial and exact solutions of the wave equation (a review),” Opt. Spectrosc. 102 4, 603–622 (2007).

    Article  ADS  Google Scholar 

  15. H. T. Eyyuboglu, Y. Baykal, and Y. Cai, “Complex degree of coherence for partially coherent general beams in atmospheric turbulence,” J. Opt. Soc. Amer., A 24 9, 2891–2901 (2007).

    Article  ADS  Google Scholar 

  16. M. S. Belen’kii, V. P. Lukin, V. L. Mironov, and V. V. Pokasov, Coherence of Laser Radiation in the Atmosphere (Nauka, Novosibirsk, 1985) [in Russian].

    Google Scholar 

  17. I. P. Lukin, “Coherence of Bessel beam in a turbulent atmosphere,” Atmos. Ocean. Opt. 25 5, 328–337 (2012).

    Article  Google Scholar 

  18. I. P. Lukin, “Bessel-Gaussian beam phase fluctuations in randomly inhomogeneous media,” Atmos. Oceanic Opt. 23 3, 236–240 (2010).

    Article  Google Scholar 

  19. S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskii, Introduction to Statistical Radiophysics. Random Fields (Nauka, Moscow, 1978) [in Russian].

    MATH  Google Scholar 

  20. I. P. Lukin, “Ring dislocation of the coherence degree of a vortex Bessel beam in a turbulent atmosphere,” Atmos. Oceanic Opt. 28 5, 415–425 (2015).

    Article  Google Scholar 

  21. I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products (Nauka, Moscow, 1108) [in Russian].

    Google Scholar 

  22. M. V. Fedoryuk, Saddle-point Method (Nauka, Moscow, 1977) [in Russian].

    MATH  Google Scholar 

  23. S. A. Akhmanov, Yu. E. D’yakov, and A. S. Chirkin, Introduction into Statistical Radiophysics and Optics (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  24. A. V. Shchegrov and E. Wolf, “Partially coherent conical beams,” Opt. Lett. 25 3, 141–143 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Lukin.

Additional information

Original Russian Text © I.P. Lukin, 2016, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukin, I.P. Spatial scales of coherence of diffraction-free beams in a turbulent atmosphere. Atmos Ocean Opt 29, 431–440 (2016). https://doi.org/10.1134/S1024856016050109

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856016050109

Keywords

Navigation