Atmospheric and Oceanic Optics

, Volume 29, Issue 5, pp 452–456 | Cite as

Properties of lasing in Rhodamine 6G solutions with nanoparticles free of plasmon resonance

  • V. A. DonchenkoEmail author
  • Al. A. Zemlyanov
  • M. M. Zinoviev
  • N. S. Panamarev
  • A. V. Trifonova
  • V. A. Kharenkov
Optics Of Clusters, Aerosols, and Hydrosoles


The threshold characteristics of lasing in a 20-μm layer of colloidal solution of Rhodamine 6G dye with plasmon-resonance Au nanoparticles and non-plasmon-resonance Pt nanoparticles excited by 532-nm radiation are experimentally studied. The spectral dependence of the scattering and absorption cross sections of gold and platinum nanoparticles are calculated within the Mie theory. It is found experimentally that the addition of nanoparticles to the active medium decreases the lasing thresholds by two orders of magnitude. It is shown that the lasing thresholds are 1.5–2 times lower when adding gold nanoparticles than when adding platinum nanoparticles of the same concentration.


active medium nanoparticles colloidal solutions lasing plasmon resonance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. M. Lawandy and R. M. Balachandran, “Random laser?,” Nature 373 6511, 204–208 (1995).ADSCrossRefGoogle Scholar
  2. 2.
    V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” JETP 26 4, 835–840 (1968).ADSGoogle Scholar
  3. 3.
    W. L. Sha, C.-H. Liu, and R. R. Alfano, “Spectral and temporal measurements of laser action of Rhodamine 640 dye in strongly scattering media,” Opt. Lett. 19 23, 1922–1924 (1994).ADSCrossRefGoogle Scholar
  4. 4.
    H. Cao, “Lasing in random laser,” Waves Random Media 13 (3), R1–R39 (2003).ADSCrossRefGoogle Scholar
  5. 5.
    N. G. Khlebtsov, “Optics and biophotonics of nanoparticles with a plasmon resonance,” Quantum Electron. 38 6, 504–529 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    S. V. Karpov and V. V. Slabko, Optical and Photophysical Properties of Fractal-Structured Metal Sols (Publishing House of SB RAS, Novosibirsk, 2003) [in Russian].Google Scholar
  7. 7.
    L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71 (235408), 1–7 (2005).Google Scholar
  8. 8.
    V. V. Klimov and D. V. Guzatov, “Optical properties of an atom in the presence of a two-nanosphere cluster,” Quantum Electron. 37 3, 209–230 (2007).ADSCrossRefGoogle Scholar
  9. 9.
    G. D. Dice, S. Mujumbar, and A. Y. Elezzabia, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86 (131105), 1–5 (2005).Google Scholar
  10. 10.
    M. A. Noginov, G. Zhu, M. Bahaura, J. Adegoke, C. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “The effect of gain and absorption on surface plasmon in metal nanoparticles,” Appl. Phys. B. 86 3, 455–460 (2007).ADSCrossRefGoogle Scholar
  11. 11.
    A. A. Zhdanov, M. P. Kreuzer, and S. Rao, “Detection of plasmon-enhanced luminescence fields from an optically manipulated pair of partially metal covered dielectric spheres,” Opt. Lett. 33 23, 43–52 (2008).CrossRefGoogle Scholar
  12. 12.
    X. Meng, K. Fujika, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polimer films embedded with silver nanopartcles,” Appl. Phys. Lett. 92 (20112), 1–4 (2008).Google Scholar
  13. 13.
    V. A. Svetlichnyi and I. N. Lapin, “Structure and properties of nanoparticles fabricated by laser ablation of Zn metal targets in water and ethanol,” Rus. Phys. J. 56 5, 581–587 (2013).CrossRefGoogle Scholar
  14. 14.
    V. A. Svetlichnyi and I. N. Lapin, “Optimization of the process of nanoparticle fabrication by laser ablation of bulk targets in a liquid,” Rus. Phys. J. 57 12, 1789–1792 (2015).CrossRefGoogle Scholar
  15. 15.
    V. S. Kazakevich, P. V. Kazakevich, P. S. Yares’ko, and I. N. Saraeva, “Dynamics of variations in the absorption spectrum of gold nanoparticle colloid due to laser fragmenting in ethyl alcohol and water,” Izv. Samarskogo Nauch. Tsentra RAN 14 4, 70–73 (2012).Google Scholar
  16. 16.
    B. G. Ershov, “Metal nanoparticles in water solutions: Electron, optical, and catalytic properties,” Ros. Khim. Zh. 45 3, 20–30 (2001).Google Scholar
  17. 17.
    M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Pergamon, Oxford, 1964).zbMATHGoogle Scholar
  18. 18.
    N. S. Panamarev, V. A. Donchenko, I. V. Samohvalov, and A. N. Panamaryova, “Scattering properties of spherically aggregated metal nanoparticles in active matrix,” Proc. SPIE 9292, 92921Z-1–92921Z-4 (2014).Google Scholar
  19. 19.
    K. Kolwas, A. Derkachova, and M. Shopa, “Size characteristics of surface plasmons and their manifestation in scattering properties of metal particles,” J. Quant. Spectrosc. Radiat. Transfer 110 (14–16), 1490–1501 (2009).ADSCrossRefGoogle Scholar
  20. 20.
    V. I. Zemskii, Yu. L. Kolesnikov, and I. K. Meshkovskii, Physics and Technology of Dye Pulsed Lasers (SpbGU ITMO, St. Petersburg, 2005) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • V. A. Donchenko
    • 1
    Email author
  • Al. A. Zemlyanov
    • 1
  • M. M. Zinoviev
    • 2
  • N. S. Panamarev
    • 2
  • A. V. Trifonova
    • 2
  • V. A. Kharenkov
    • 1
  1. 1.Siberian Physical-Technical InstituteTomsk State UniversityTomskRussia
  2. 2.Tomsk State UniversityTomskRussia

Personalised recommendations