Atmospheric and Oceanic Optics

, Volume 29, Issue 5, pp 415–421 | Cite as

Superstatistics of optical beam scintillations over thermally nonequilibrium paths

  • T. I. ArsenyanEmail author
  • O. M. Vokhnik
  • A. M. Zotov
  • A. G. Komarov
  • A. V. Nesterov
  • N. A. Suhareva
Optics of Stochastically-Heterogeneous Media


Methods are presented for the analysis of sounding optical beam intensity variations at the exit of a nonstationary nonequilibrium path with the use of the superstatistics and nonextensive statistical mechanics. The connections of the first and the second moments of the experimentally recorded distribution functions of the intensity scintillations inside the subapertures of the output beam profile were applied to derive the models for nonequilibrium flows as well as the hypotheses about the distributions of the temperature and aerodynamic flow phase states over the path.


open optical channel Tsallis statistics turbulence superstatistics scintillation index 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Beck and E. G. D. Cohen, “Superstatistics,” Phys. A (Amsterdam, Neth.) 322 (1–4), 267–275 (2003).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    C. Beck, E. G. D. Cohen, and H. L. Swinney, “From time series to superstatistics,” Phys. Rev. E 72 (7), 056133 (2005).ADSCrossRefGoogle Scholar
  3. 3.
    G. C. Yalcin and C. Beck, “Environmental superstatistics,” Phys. A (Amsterdam, Neth.) 392, (21), 5431–5452 (2013).ADSCrossRefGoogle Scholar
  4. 4.
    A. A. Nelson and B. F. Rafael, “Superstatistics and the quest of generalized ensembles equivalence in a system with long-range interactions,” Phys. A (Amsterdam, Neth.) 446, 195–203 (2016).MathSciNetCrossRefGoogle Scholar
  5. 5.
    S. Abe, C. Beck, and E. G. D. Cohen, “Superstatistics, thermodynamics, and fluctuations,” Phys. Rev., E 76 16, 031102 (2007).ADSCrossRefGoogle Scholar
  6. 6.
    A. G. Bashkirov, “Renyi entropy as a statistical entropy for complex systems,” Theor. Math. Phys. 149 2, 1559–1573 (2006).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    C. Tsallis, “Possible generalization of Boltzmann–Gibbs statistics,” J. Stat. Phys. 52 1–2, 479–487 (1988).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    C. Tsallis, P. W. Lambert, and D. Prato, “A non extensive critical phenomenon scenario for quantum entanglement,” Phys. A (Amsterdam, Neth.) 295 1–2, 158–171 (2001).ADSCrossRefzbMATHGoogle Scholar
  9. 9.
    A. G. Bashkirov, Self-organization and the Second Law of Thermodynamics (Institute of Geosphere Dynamics Ras, Chelyabinsk, 2007) [in Russian].Google Scholar
  10. 10.
    C. Beck, E. G. D. Cohen, and S. Rizzo, “Atmospheric turbulence and superstatistics,” Europhys. News 36 6, 189–191 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    C. Beck, “Superstatistics in hydrodynamic turbulence,” Phys. D (Amsterdam, Neth.) 193 1, 195–207 (2004).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    C. Beck, “Dynamical foundations of nonextensive statistical mechanics,” Phys. Rev. Lett. 87 7, 180601 (2001).ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    C. Beck, G. S. Lewis, and H. L. Swinney, “Measuring nonextensitivity parameters in a turbulent Couette–Taylor flow,” Phys. Rev., E 63 15, 035303 (2001).ADSCrossRefGoogle Scholar
  14. 14.
    A. K. Aringazin and M. I. Mazhitov, Gaussian factor in the distribution arising from the nonextensive statistics approach to fully developed turbulence. Scholar
  15. 15.
    P. Rabassa and C. Beck, Extreme value laws for superstatistics. Scholar
  16. 16.
    T. I. Arsenyan, N. A. Sukhareva, A. P. Sukhorukov, and A. A. Chugunov, “Scintillation index of the Gaussian beams propagated through the paths with strong turbulence,” Moscow Univ. Phys. Bul. 69 4, 308–317 (2014).ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    A. V. Getling, Rayleigh–Benard Convection: Structure and Dynamics (World Scientific Publishing Co., Singapore, 1996).zbMATHGoogle Scholar
  18. 18.
    T. I. Arsenyan, N. A. Sukhareva, and A. P. Sukhorukov, “Turbulence-induced laser-beam distortions in phase space,” Moscow Univ. Phys. Bul. 69 1, 55–60 (2014).ADSCrossRefGoogle Scholar
  19. 19.
    Integrated development environment (IDE) for R. Scholar
  20. 20.
    Graphical and statistical analyses of environmental data. Scholar
  21. 21.
    S. P. Millard, EnvStats: An R Package for Environmental Statistics (Springer, New York, 2013).CrossRefzbMATHGoogle Scholar
  22. 22.
    R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics (John Wiley & Sons, New York, 1975), Vol. 2.zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • T. I. Arsenyan
    • 1
    Email author
  • O. M. Vokhnik
    • 1
  • A. M. Zotov
    • 1
  • A. G. Komarov
    • 2
  • A. V. Nesterov
    • 2
  • N. A. Suhareva
    • 1
  1. 1.Department of PhysicsMoscow State UniversityMoscowRussia
  2. 2.Mosсow Radiocommunications Research InstituteMoscowRussia

Personalised recommendations