Skip to main content
Log in

Estimation of the integral wind velocity and turbulence in the atmosphere from distortions of optical images of naturally illuminated objects

  • Optics of Stochastically-Heterogeneous Media
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The average crosswind and intensity of atmospheric turbulence are simultaneously estimated by the classical laser scintillation method and by the passive optical method from the analysis of the light scattered by natural or man-made topographic objects in the natural daylight illumination conditions. The passive sensing method does not require artificial light sources, and consists in the formation of incoherent images of sunlit topographic objects and in the analysis of images’ distortions induced by the turbulence between the object and the image plane. Estimates of the integral average crosswind and the structural constant of the air refractive index are compared in atmospheric experiments on the same optical measurement path by both methods. Comparison with lidar data is made. The optical measurements of integral characteristics were accompanied by independent local acoustic measurements using an ultrasonic anemometer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. I. N. Smalikho and V. A. Banakh, “Estimation of aircraft wake vortex parameters from data measured with 1.5 µm coherent Doppler lidar,” Opt. Lett. 40 14, 3408–3411 (2015).

    Article  ADS  Google Scholar 

  2. I. N. Smalikho, V. A. Banakh, F. Holzäpfel, and S. Rahm, “Method of radial velocities for the estimation of aircraft wake vortex parameters from data measured by coherent Doppler lidar,” Opt. Express 23 (19), A1194–A1207 (2015).

    Article  ADS  Google Scholar 

  3. V. A. Banakh, I. N. Smalikho, and A. V. Falits, “Lidar investigation of the atmospheric boundary layer dynamics in the coastal zone of Lake Baikal,” Proc. SPIE—Int. Soc. Opt. Eng. 9680, 968039-1–968039-5 (2015).

    Google Scholar 

  4. I. N. Smalikho and V. A. Banakh, “Estimation of aircraft wake vortex parameters from data measured by a stream line lidar,” Proc. SPIE—Int. Soc. Opt. Eng. 9680, 968037-1–968037-7 (2015).

    Google Scholar 

  5. I. N. Smalikho, V. A. Banakh, F. Holzäpfel, and S. Rahm, “Estimation of aircraft wake vortex parameters from array of radial velocities measured by a coherent Doppler lidar,” Opt. Atmos. Okeana 28 8, 742–750 (2015).

    Google Scholar 

  6. V. A. Banakh and I. N. Smalikho, “Aircraft wake vortex parametrization based on 1.5 µm coherent Doppler lidar data,” in Abstracts of the 27th Int. Laser Radar Conf. 5–10 July, 2015, New York, USA, pp. PS-B2.0201–PS-B2.0204.

    Google Scholar 

  7. V. A. Banakh, I. N. Smalikho, and S. Rahm, “Estimation of refractive index structure characteristic of air from coherent Doppler wind lidar data,” Opt. Lett. 39 15, 4321–4324 (2014).

    Article  ADS  Google Scholar 

  8. V. A. Banakh, I. N. Smalikho, and S. Rahm, “Determination of the optical turbulence intensity from data measured by a coherent Doppler lidar,” Proc. SPIE—Int. Soc. Opt. Eng. 9292 (2014). doi 10.1117/12.2074238

  9. R. S. Lawrence, G. R. Ochs, and S. F. Clifford, “Use of scintillations to measure average wind across a light beam,” Appl. Opt. 11 2, 239–243 (1972).

    Article  ADS  Google Scholar 

  10. T.-I. Wang, G. R. Ochs, and S. Lawrence, “Wind measurements by the temporal cross-correlation of the optical scintillations,” Appl. Opt. 20 23, 4073–4081 (1981).

    Article  ADS  Google Scholar 

  11. A. L. Afanas’ev, V. A. Banakh, and A. P. Rostov, “Estimate of wind velocity in the atmosphere based on analysis of turbulent distortions of laser beam images registered by video camera,” Atmos. Ocean. Opt. 24 1, 88–94 (2011).

    Article  Google Scholar 

  12. J. Shapira, O. Porat, M. Livneh, Z. Wies, D. Heflinger, S. Fastig, Y. Glik, and A. Engel, “Atmospheric cross wind and turbulence measurements using turbulenceinduced scintillations,” Proc. SPIE 7684, 7684L1-1–7684L1-11 (2010).

    Article  ADS  Google Scholar 

  13. BLS2000 Large Aperture Scintillometer for Very Long Paths. http://www.scintec.com.

  14. M. B. Roopashree, Vyas Akondi, and Prasad B. Raghavendra, “A review of atmospheric wind speed measurement techniques with Shack Hartmann wavefront imaging sensor in adaptive optics,” J. Indian Inst. Sci. 93 1, 67–84 (2013).

    Google Scholar 

  15. A. Peskoff, “Theory for remote sensing of wind-velocity profiles,” Proc. IEEE 59, 324 (1971).

    Article  Google Scholar 

  16. V. A. Banakh and D. A. Marakasov, “Wind profling based on the optical beam intensity statistics in a turbulent atmosphere,” J. Opt. Soc. Amer., A 24 10, 3245–3254 (2007).

    Article  ADS  Google Scholar 

  17. V. A. Banakh and D. A. Marakasov, “Wind profile recovery from intensity fluctuations of a laser beam reflected in a turbulent atmosphere,” Quantum Electron. 38 4, 404–408 (2008).

    Article  ADS  Google Scholar 

  18. A. L. Afanas’ev, V. A. Banakh, and A. P. Rostov, “Wavelet profiling of wind velocity using intensity fluctuations of laser beam propagating in the atmosphere,” Opt. Spectrosc. 105 4, 698–705 (2008).

    Google Scholar 

  19. S. F. Clifford, G. R. Ochs, and T.-I. Wang, “Optical wind sensing by observing the scintillations of a random scene,” Appl. Opt. 14 12, 2844–2850 (1975).

    Article  ADS  Google Scholar 

  20. D. L. Walters, “Passive remote crosswind sensor,” Appl. Opt. 16 10, 2625–2626 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  21. M. F. Stell, C. L. Moore, H. R. Burris, M. R. Suite, M. J. Vilchec, M. A. Davis, R. Mahon, E. Oh, W. S. Rabinovich, G. C. Gilbreath, W. J. Scharpf, and A. E. Reed, “Passive optical monitor for atmospheric turbulence and windspeed,” Proc. SPIE—Int. Soc. Opt. Eng. 5160, 422–431 (2004).

    ADS  Google Scholar 

  22. O. Porat and J. Shapira, “Crosswind sensing from optical- turbulence-induced fluctuations measured by a video camera,” Appl. Opt. 49 28, 5236–5244 (2010).

    Article  ADS  Google Scholar 

  23. V. I. Tatarskii, Wave Propagation in a Turbulent Atmosphere (Nauka, Moscow, 1967) [in Russian].

    Google Scholar 

  24. A. S. Gurvich, A. I. Kon, V. L. Mironov, and S. S. Khmelevtsov, Laser Radiation in a Turbulent Atmosphere (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  25. V. E. Zuev, V. A. Banakh, and V. V. Pokasov, Optics of a Turbulent Atmosphere (Gidrometeoizdat, Leningrad, 1988) [in Russian].

    Google Scholar 

  26. A. P. Rostov, A. P. Ivanov, and A. L. Afanas’ev, “Experimental comparison of a path optical airflow meter with an array of ultrasonic sensors in the surface air layer,” in Abstracts of the IX Intern. Symp. “Atmospheric and Ocean Optics. Atmospheric Physics” (Publishing House of IAO SB RAS, Tomsk, 2002) [in Russian].

    Google Scholar 

  27. A. P. Rostov, “Ultrasonic anemometer-thermometer for measurements of turbulent parameters in the surface air layer,” Nauka Proizvodstvu, No. 9, 44–48 (2003).

    Google Scholar 

  28. V. A. Banakh, I. N. Smalikho, A. V. Falits, B. D. Belan, M. Yu. Arshinov, and P. N. Antokhin, “Joint radiosonde and Doppler lidar measurements of wind in the atmospheric boundary layer,” Atmos. Ocean. Opt. 28 2, 185–191 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Afanasiev.

Additional information

Original Russian Text © A.L. Afanasiev, V.A. Banakh, A.P. Rostov, 2016, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afanasiev, A.L., Banakh, V.A. & Rostov, A.P. Estimation of the integral wind velocity and turbulence in the atmosphere from distortions of optical images of naturally illuminated objects. Atmos Ocean Opt 29, 422–430 (2016). https://doi.org/10.1134/S102485601605002X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102485601605002X

Keywords

Navigation