Advertisement

Atmospheric and Oceanic Optics

, Volume 29, Issue 5, pp 422–430 | Cite as

Estimation of the integral wind velocity and turbulence in the atmosphere from distortions of optical images of naturally illuminated objects

  • A. L. AfanasievEmail author
  • V. A. Banakh
  • A. P. Rostov
Optics of Stochastically-Heterogeneous Media

Abstract

The average crosswind and intensity of atmospheric turbulence are simultaneously estimated by the classical laser scintillation method and by the passive optical method from the analysis of the light scattered by natural or man-made topographic objects in the natural daylight illumination conditions. The passive sensing method does not require artificial light sources, and consists in the formation of incoherent images of sunlit topographic objects and in the analysis of images’ distortions induced by the turbulence between the object and the image plane. Estimates of the integral average crosswind and the structural constant of the air refractive index are compared in atmospheric experiments on the same optical measurement path by both methods. Comparison with lidar data is made. The optical measurements of integral characteristics were accompanied by independent local acoustic measurements using an ultrasonic anemometer.

Keywords

wind velocity turbulence optical imaging spatiotemporal correlation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. N. Smalikho and V. A. Banakh, “Estimation of aircraft wake vortex parameters from data measured with 1.5 µm coherent Doppler lidar,” Opt. Lett. 40 14, 3408–3411 (2015).ADSCrossRefGoogle Scholar
  2. 2.
    I. N. Smalikho, V. A. Banakh, F. Holzäpfel, and S. Rahm, “Method of radial velocities for the estimation of aircraft wake vortex parameters from data measured by coherent Doppler lidar,” Opt. Express 23 (19), A1194–A1207 (2015).ADSCrossRefGoogle Scholar
  3. 3.
    V. A. Banakh, I. N. Smalikho, and A. V. Falits, “Lidar investigation of the atmospheric boundary layer dynamics in the coastal zone of Lake Baikal,” Proc. SPIE—Int. Soc. Opt. Eng. 9680, 968039-1–968039-5 (2015).Google Scholar
  4. 4.
    I. N. Smalikho and V. A. Banakh, “Estimation of aircraft wake vortex parameters from data measured by a stream line lidar,” Proc. SPIE—Int. Soc. Opt. Eng. 9680, 968037-1–968037-7 (2015).Google Scholar
  5. 5.
    I. N. Smalikho, V. A. Banakh, F. Holzäpfel, and S. Rahm, “Estimation of aircraft wake vortex parameters from array of radial velocities measured by a coherent Doppler lidar,” Opt. Atmos. Okeana 28 8, 742–750 (2015).Google Scholar
  6. 6.
    V. A. Banakh and I. N. Smalikho, “Aircraft wake vortex parametrization based on 1.5 µm coherent Doppler lidar data,” in Abstracts of the 27th Int. Laser Radar Conf. 5–10 July, 2015, New York, USA, pp. PS-B2.0201–PS-B2.0204.Google Scholar
  7. 7.
    V. A. Banakh, I. N. Smalikho, and S. Rahm, “Estimation of refractive index structure characteristic of air from coherent Doppler wind lidar data,” Opt. Lett. 39 15, 4321–4324 (2014).ADSCrossRefGoogle Scholar
  8. 8.
    V. A. Banakh, I. N. Smalikho, and S. Rahm, “Determination of the optical turbulence intensity from data measured by a coherent Doppler lidar,” Proc. SPIE—Int. Soc. Opt. Eng. 9292 (2014). doi 10.1117/12.2074238Google Scholar
  9. 9.
    R. S. Lawrence, G. R. Ochs, and S. F. Clifford, “Use of scintillations to measure average wind across a light beam,” Appl. Opt. 11 2, 239–243 (1972).ADSCrossRefGoogle Scholar
  10. 10.
    T.-I. Wang, G. R. Ochs, and S. Lawrence, “Wind measurements by the temporal cross-correlation of the optical scintillations,” Appl. Opt. 20 23, 4073–4081 (1981).ADSCrossRefGoogle Scholar
  11. 11.
    A. L. Afanas’ev, V. A. Banakh, and A. P. Rostov, “Estimate of wind velocity in the atmosphere based on analysis of turbulent distortions of laser beam images registered by video camera,” Atmos. Ocean. Opt. 24 1, 88–94 (2011).CrossRefGoogle Scholar
  12. 12.
    J. Shapira, O. Porat, M. Livneh, Z. Wies, D. Heflinger, S. Fastig, Y. Glik, and A. Engel, “Atmospheric cross wind and turbulence measurements using turbulenceinduced scintillations,” Proc. SPIE 7684, 7684L1-1–7684L1-11 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    BLS2000 Large Aperture Scintillometer for Very Long Paths. http://www.scintec.com.Google Scholar
  14. 14.
    M. B. Roopashree, Vyas Akondi, and Prasad B. Raghavendra, “A review of atmospheric wind speed measurement techniques with Shack Hartmann wavefront imaging sensor in adaptive optics,” J. Indian Inst. Sci. 93 1, 67–84 (2013).Google Scholar
  15. 15.
    A. Peskoff, “Theory for remote sensing of wind-velocity profiles,” Proc. IEEE 59, 324 (1971).CrossRefGoogle Scholar
  16. 16.
    V. A. Banakh and D. A. Marakasov, “Wind profling based on the optical beam intensity statistics in a turbulent atmosphere,” J. Opt. Soc. Amer., A 24 10, 3245–3254 (2007).ADSCrossRefGoogle Scholar
  17. 17.
    V. A. Banakh and D. A. Marakasov, “Wind profile recovery from intensity fluctuations of a laser beam reflected in a turbulent atmosphere,” Quantum Electron. 38 4, 404–408 (2008).ADSCrossRefGoogle Scholar
  18. 18.
    A. L. Afanas’ev, V. A. Banakh, and A. P. Rostov, “Wavelet profiling of wind velocity using intensity fluctuations of laser beam propagating in the atmosphere,” Opt. Spectrosc. 105 4, 698–705 (2008).Google Scholar
  19. 19.
    S. F. Clifford, G. R. Ochs, and T.-I. Wang, “Optical wind sensing by observing the scintillations of a random scene,” Appl. Opt. 14 12, 2844–2850 (1975).ADSCrossRefGoogle Scholar
  20. 20.
    D. L. Walters, “Passive remote crosswind sensor,” Appl. Opt. 16 10, 2625–2626 (1977).ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    M. F. Stell, C. L. Moore, H. R. Burris, M. R. Suite, M. J. Vilchec, M. A. Davis, R. Mahon, E. Oh, W. S. Rabinovich, G. C. Gilbreath, W. J. Scharpf, and A. E. Reed, “Passive optical monitor for atmospheric turbulence and windspeed,” Proc. SPIE—Int. Soc. Opt. Eng. 5160, 422–431 (2004).ADSGoogle Scholar
  22. 22.
    O. Porat and J. Shapira, “Crosswind sensing from optical- turbulence-induced fluctuations measured by a video camera,” Appl. Opt. 49 28, 5236–5244 (2010).ADSCrossRefGoogle Scholar
  23. 23.
    V. I. Tatarskii, Wave Propagation in a Turbulent Atmosphere (Nauka, Moscow, 1967) [in Russian].Google Scholar
  24. 24.
    A. S. Gurvich, A. I. Kon, V. L. Mironov, and S. S. Khmelevtsov, Laser Radiation in a Turbulent Atmosphere (Nauka, Moscow, 1976) [in Russian].Google Scholar
  25. 25.
    V. E. Zuev, V. A. Banakh, and V. V. Pokasov, Optics of a Turbulent Atmosphere (Gidrometeoizdat, Leningrad, 1988) [in Russian].Google Scholar
  26. 26.
    A. P. Rostov, A. P. Ivanov, and A. L. Afanas’ev, “Experimental comparison of a path optical airflow meter with an array of ultrasonic sensors in the surface air layer,” in Abstracts of the IX Intern. Symp. “Atmospheric and Ocean Optics. Atmospheric Physics” (Publishing House of IAO SB RAS, Tomsk, 2002) [in Russian].Google Scholar
  27. 27.
    A. P. Rostov, “Ultrasonic anemometer-thermometer for measurements of turbulent parameters in the surface air layer,” Nauka Proizvodstvu, No. 9, 44–48 (2003).Google Scholar
  28. 28.
    V. A. Banakh, I. N. Smalikho, A. V. Falits, B. D. Belan, M. Yu. Arshinov, and P. N. Antokhin, “Joint radiosonde and Doppler lidar measurements of wind in the atmospheric boundary layer,” Atmos. Ocean. Opt. 28 2, 185–191 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. L. Afanasiev
    • 1
    Email author
  • V. A. Banakh
    • 1
  • A. P. Rostov
    • 1
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of ScienceTomskRussia

Personalised recommendations