Skip to main content
Log in

Energy parameters of CO2 laser radiation focused in a turbulent atmosphere under wind-dominated thermal blooming

  • Nonlinear Optics
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Temporal dynamics of peak intensity and power in a finite-size aperture of focused radiation at a wavelength of 10.6 µm under thermal self-action in a clear turbulent atmosphere is analyzed by means of computer simulation. Propagation of Gaussian beams along paths up to 160 m long is considered. It is shown that there are time spans where the peak intensity of a sharply focused beam in the middle of the path is higher than in the focal plane at the end of the path under strong fluctuations of the refractive index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. E. Geints, G. N. Grachev, A. A. Zemlyanov, A. M. Kabanov, A. A. Pavlov, A. G. Ponomarenko, and V. N. Tishchenko, “Thermal self-action of high-power continuous and pulse-periodic CO2 laser radiation in air: I. Numerical simulation of propagation along an atmospheric path,” Atmos. Ocean. Opt. 27 (2), 107–114 (2014).

    Article  Google Scholar 

  2. G. N. Grachev, A. A. Zemlyanov, A. G. Ponomarenko, V. N. Tishchenko, Yu. E. Geints, A. M. Kabanov, A. A. Pavlov, Al. A. Pavlov, V. A. Pogodaev, P. A. Pinaev, A. L. Smirnov, and P. A. Statsenko, “Thermal self-action of high-power continuous and pulseperiodic pulse-periodic CO2 laser radiation in air: II. Laboratory experiments,” Atmos. Ocean. Opt. 27 (2), 115–122 (2014).

    Article  Google Scholar 

  3. V. A. Banakh and A. V. Falits, “Numerical simulation of propagation of laser beams formed by multielement apertures in a turbulent atmosphere under thermal blooming,” Atmos. Ocean. Opt. 26 (6), 455–465 (2013).

    Article  Google Scholar 

  4. M. Stoneback, A. Ishimaru, C. Reinhardt, and Y. Kuga, “Temperature rise in objects due to optical focused beam through atmospheric turbulence near ground and ocean surface,” Opt. Eng. 52 (3), 036001 (2013).

    Article  ADS  Google Scholar 

  5. V. P. Kandidov, “Review of nonlinear effects during laser radiation propagation in the atmosphere,” in Atmospheric Nonlinear Optics and Optoacoustics (IAO SB RAS, Tomsk, 1988) [in Russian].

    Google Scholar 

  6. Powerful Laser Beams in a Randomly Inhomogeneous Atmosphere, Ed. by V.A. Banakh (Publishing House of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 1998) [in Russian].

  7. V. E. Zuev, A. A. Zemlyanov, and Yu. D. Kopytin, Nonlinear Optics of Atmosphere (Gidrometeoizdat, Leningrad, 1989) [in Russian].

    Google Scholar 

  8. Laser Beam Propagation in the Atmosphere: Applied Physics Problems, Ed. by D. Stroben (Mir, Moscow, 1981) [in Russian].

  9. F. G. Gebhardt, “Twenty-five years of thermal blooming: An overview,” SPIE 1221, 1–25 (1990).

    ADS  Google Scholar 

  10. D. K. Smit, “Propagation of high-power laser radiation. Thermal distortion of a beam,” Tr. Inst. Inzhenerov Elektrotekhn. Radioelektron. 65 (12), 59–103 (1977).

    Google Scholar 

  11. V. V. Vorob’ev, Thermal Self-Action of Laser Radiation in the Atmosphere (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  12. V. A. Aleshkevich and A. P. Sukhorukov, “Deflection of powerful light beams by wind in absorbing media,” JETP Lett. 12 (2), 77–79 (1970).

    ADS  Google Scholar 

  13. L. C. Bradley and J. Herrmann, “Phase compensation for thermal blooming,” Appl. Opt. 13 (2), 331–334 (1974).

    Article  ADS  Google Scholar 

  14. S. A. Akhmanov, M. A. Vorontsov, V. P. Kandidov, A. P. Sukhorukov, and S. S. Chesnokov, “Thermal self-action of light beams and methods of compensating for it,” Radiophys. Quantum Electron. 23 (1), 1–30 (1980).

    Article  ADS  Google Scholar 

  15. V. A. Vysloukh, V. P. Kandidov, S. S. Chesnokov, and S. A. Shlenov, “Adaptive focusing of a high-intensity beam in an irregular medium,” Sov. Phys. J. 28 (11), 878–887 (1985).

    Article  Google Scholar 

  16. V. I. Zuev, V. A. Banakh, and V. V. Pokasov, Modern Problems of Atmospheric Optics. Vol. 5. Turbulent Atmospheric Optics (Gidrometeoizdat, Leningrad, 1988) [in Russian].

    Google Scholar 

  17. A. S. Gurvich, A. I. Kon, V. L. Mironov, and S. S. Khmelevtsov, Laser Radiation in a Turbulent Atmosphere (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  18. F. G. Gebhard, “High power laser propagation,” Appl. Opt. 15 (6), 1479–1493 (1976).

    Article  ADS  Google Scholar 

  19. A. I. Bondarenko, V. V. Vasil’tsov, M. G. Galushkin, V. S. Golubev, V. G. Niz’ev, V. Ya. Panchenko, A. M. Zabelin, Yu. N. Zavalov, and V. P. Yakunin, “Industrial CO2 lasers with high-quality radiation,” in Proc. IPLIT RAN, Ed. by V.Ya. Panchenko and V.S. Golubeva (Interkontakt Nauka, Moscow, 2005), pp. 251–259 [in Russian].

    Google Scholar 

  20. V. O. Aleksandrov, V. V. Budanov, V. V. Vasil’tsov, M. G. Galushkin, V. S. Golubev, E. N. Egorov, E. V. Zelenov, V. Ya. Panchenko, A. N. Semenov, A. V. Solov’ev, and E. V. Chashkin, “New kilowatt waveguide CO2 process lasers with high radiation quality,” J. Opt. Technol. 76 (5), 255–258 (2009).

    Article  Google Scholar 

  21. V. P. Kandidov and S. A. Shlenov, “Spatial statistics of a light beam in the case of wind refraction in a turbulent atmosphere,” Sov._J. Quantum Electron. 15 (7), 982–987 (1985).

    Article  ADS  Google Scholar 

  22. V. P. Kandidov, “Monte Carlo method in nonlinear statistical optics,” Phys.-Uspekhi 39 (12), 1243–1272 (1996).

    Article  ADS  Google Scholar 

  23. E. M. Johansson and D. T. Gavel, “Simulation of stellar speckle imaging,” Proc. SPIE 2200, 372–383 (1994).

    Article  ADS  Google Scholar 

  24. S. A. Shlenov and V. P. Kandidov, “Filament bunch formation upon femtosecond laser pulse propagation through the turbulent atmosphere. Part 1. Method,” Atmos. Ocean. Opt. 17 (8), 565–570 (2004).

    Google Scholar 

  25. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Medium (SPIE Press, Bellingham, WA, 2005), 2nd ed.

    Book  Google Scholar 

  26. V. P. Lukin, F. Yu. Kanev, P. A. Konyaev, and B. V. Fortes, “Numerical model of the atmospheric adaptive optical system. I. Laser beam propagation in the atmosphere,” Atmos. Ocean. Opt. 8 (3), 210–214 (1995).

    Google Scholar 

  27. F. Dios, J. Recolons, A. Rodrigues, and O. Batet, “Temporal analysis of laser beam propagation in the atmosphere using computer-generated long phase screens,” Opt. Express 16 (3), 2206–2220 (2008).

    Article  ADS  Google Scholar 

  28. F. G. Gebhardt, “Atmospheric effects modeling for high-energy laser systems,” Proc. SPIE 2502, 101–110 (1995).

    Article  ADS  Google Scholar 

  29. M. A. Vorontsov and V. I. Shmal’gauzen, Principles of Adaptive Optics (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Shlenov.

Additional information

Original Russian Text © S.A. Shlenov, V.V. Vasiltsov, V.P. Kandidov, 2016, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shlenov, S.A., Vasiltsov, V.V. & Kandidov, V.P. Energy parameters of CO2 laser radiation focused in a turbulent atmosphere under wind-dominated thermal blooming. Atmos Ocean Opt 29, 324–330 (2016). https://doi.org/10.1134/S102485601604014X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102485601604014X

Keywords

Navigation