Skip to main content
Log in

Superradiance by molecular nitrogen ions in filaments

  • Optical Sources and Receivers for Environmental Studies
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Results of the experimental study of population inversion in the resonant electronic transition \({B^3}{\pi _g} - {A^3}\sum _u^ + \) of nitrogen ions by optical pumping of atmospheric air and pure nitrogen by a femtosecond laser pulse at a wavelength of 950 nm are presented. It is shown that the inversion results from selective population of the \(N_2^ + \left( {{B^2}\sum _u^ + ,v' = 0} \right)\) excited state during multiphoton excitation of the autoionization state of the nitrogen molecule with an energy of 18.7 eV. Seed photons for superradiance at transitions of molecular nitrogen ions are photons of the axial supercontinuum that occurs in a filament at the corresponding wavelengths. The superradiance mode is implemented at the wavelength λ = 358.4 nm referred to the transition of the CN molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. G. Heard, “Ultra-violet gas laser at room temperature,” Nature 200, 667–672 (1963).

    Article  ADS  Google Scholar 

  2. A. Svedberg and L. Hogborg, “Observation of superradiant laser action in spark discharges in air at atmospheric pressure,” Appl. Phys. Lett. 12 (3), 102–108 (1968).

    Article  ADS  Google Scholar 

  3. V. C. Antonov, I. N. Knyazev, and V. G. Movshev, “Generation UV nitrogen laser in the open air of the cuvette with transverse excitation,” Quantum Electron. 1 (2), 433–435 (1974).

    Google Scholar 

  4. S. K. Searles, “Superfluorescent laser emission from electron-beam pumped Ar + N2 mixtures,” Appl. Phys. Lett. 25 (12), 735–737 (1974).

    Article  ADS  Google Scholar 

  5. C. B. Collins, A. J. Conningham, and S. M. Curry, “Stimulated emission from charge-transfer reactions in the afterglow of an e-beam discharge in N2 + He high pressure mixtures,” Appl. Phys. Lett. 24 (10), 477–478 (1974).

    Article  ADS  Google Scholar 

  6. V. N. Ishchenko, V. N. Lisitsyn, A. M. Razhev, V. N. Starinsky, and P. L. Chapovsky, “The laser,” Opt. Commun. 13 (3), 231–234 (1975).

    Article  ADS  Google Scholar 

  7. Q. Luo, W. Lu, and S. L. Chin, “Lasing action in air induced by ultra-fast laser filamentation,” Appl. Phys. B 76 (3), 337–340 (2003).

    Article  ADS  Google Scholar 

  8. D. Kartashov, S. Alisauskas, G. Andriukaitis, A. Pugzlys, M. Shneider, A. Zheltikov, S. L. Chin, and A. Baltuska, “Free-space nitrogen gas laser driven by a femtosecond filament,” Phys. Rev., A 86, 033831 (2012).

    Article  ADS  Google Scholar 

  9. M. N. Shneider, A. Bakuska, and A. M. Zheltikov, “Population inversion of molecular nitrogen in an Ar: N2 mixture by selective resonance-enhanced multiphoton ionization,” J. Appl. Phys. 110, 083112 (2011).

    Article  ADS  Google Scholar 

  10. J. Yao, B. Zeng, H. Xu, G. Li, W. Chu, J. Ni, H. Zhang, S. L. Chin, Y. Cheng, and Z. Xu, “High-brightness switchable multiwavelength remote laser in air,” Phys. Rev., A 84 (5), 051802 (2011).

    Article  ADS  Google Scholar 

  11. J. Ni, W. Chu, C. Jing, H. Zhang, B. Zeng, J. Yao, G. Li, H. Xie, C. Zhang, H. Xu, S. L. Chin, Y. Cheng, and Z. Xu, “Identification of the physical mechanism of generation of coherent N2 emissions in air by femtosecond laser excitation,” Opt. Express. 21 (7), 8746–8752 (2013).

    Article  ADS  Google Scholar 

  12. J. Yao, G. Li, C. Jing, B. Zeng, W. Chu, J. Ni, H. Zhang, H. Xie, C. Zhang, H. Li, H. Xu, S. L. Chin, Y. Cheng, and Z. Xu, “Remote creation of coherent emissions in air with two-color ultrafast laser pulses,” New J. Phys. 15 (2), 023046 (2013).

    Article  ADS  Google Scholar 

  13. V. E. Prokopiev, N. G. Ivanov, D. A. Krivonosenko, and V. F. Losev, “A study of elementary physical processes in the plasma regions filamentation and optical breakdown in the propagation of fs laser pulses with a wavelength of 950 nm in air at atmospheric pressure,” in Program of V Russian Conference “The interaction of highly concentrated flows of energy materials in advanced technology and medicine”, Novosibirsk, March 26–29, 2013 (Parallel’, Novosibirsk, 2013), p.6.

    Google Scholar 

  14. V. E. Prokopev, N. G. Ivanov, D. A. Krivonosenko, and V. F. Losev, “Investigation of the elementary physical processes in plasma of filamentation and optical breakdown regions accompanying the propagation of the femtosecond laser pulse with wavelength of 950 nm in air at atmospheric pressure,” Rus. Phys. J. 56 (11), 1274–1280 (2014).

    Article  Google Scholar 

  15. Yi. Liu, Y. Brelet, G. Point, A. Houard, and A. Mysyrowicz, “Self-seeded lasing in ionized air pumped by 800 nm femtosecond laser pulses,” Opt. Express 21 (19), 22791–22798 (2013).

    Article  ADS  Google Scholar 

  16. Tie-Jun Wang, Jingjing Ju, Jean-Francois Daigle, Shuai Yuan, Ruxin Li, and Leang Chin See, “Selfseeded forward lasing action from a femtosecond Ti:Sapphire laser filament in air,” Laser Phys. Lett. 10 (12), 1–4 (2013).

    Google Scholar 

  17. Tie-Jun Wang, Jean-Francois Daigle, Jingjing Ju, Shuai Yuan, Ruxin Li, and See Leang Chin, “Forward lasing action at multiple wavelengths seeded by white light from a femtosecond laser filament in air,” Phys. Rev., A 88 (5), 053429 (2013).

    Article  ADS  Google Scholar 

  18. S. V. Alekseev, N. G. Ivanov, B. M. Koval’chuk, V. F. Losev, G. A. Mesyats, L. D. Mikheev, Yu. Panchenko, N. A. Ratakhin, and A. G. Yastremskii, “Hybrid femtosecond laser system THL-100 on the base of XeF(C–A) amplifier,” Opt. Atmos. Okeana 25 (3), 221–225 (2012).

    Google Scholar 

  19. S. V. Alekseev, A. I. Aristov, N. G. Ivanov, B. M. Kovalchuk, V. F. Losev, G. A. Mesyats, L. D. Mikheev, Yu. N. Panchenko, and N. A. Ratakhin, “Multiterawatt femtosecond laser system in the visible with photochemically driven XeF(C-A) boosting amplifier,” Laser Part. Beams 31 (1), 17–21 (2013).

    Article  ADS  Google Scholar 

  20. S. V. Alekseev, M. V. Ivanov, N. G. Ivanov, V. F. Losev, G. A. Mesyats, Yu. N. Panchenko, and N. A. Ratakhin, “Parameters of the THL-100 hybrid femtosecond laser system after modernization,” Rus. Phys. J. 58 (8), 1087–1092 (2015).

    Article  Google Scholar 

  21. R. P. Madden and A. G. Parr, “Resonance phenomena in molecular photoionization: Impact of synchrotron radiation,” Appl. Opt. 21 (2), 179–188 (1982).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Ivanov.

Additional information

Original Russian Text © N.G. Ivanov, V.F. Losev, V.E. Prokop’ev, K.A. Sitnik, 2016, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, N.G., Losev, V.F., Prokop’ev, V.E. et al. Superradiance by molecular nitrogen ions in filaments. Atmos Ocean Opt 29, 385–389 (2016). https://doi.org/10.1134/S1024856016040072

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856016040072

Keywords

Navigation