Advertisement

Atmospheric and Oceanic Optics

, Volume 29, Issue 4, pp 385–389 | Cite as

Superradiance by molecular nitrogen ions in filaments

  • N. G. IvanovEmail author
  • V. F. Losev
  • V. E. Prokop’ev
  • K. A. Sitnik
Optical Sources and Receivers for Environmental Studies
  • 30 Downloads

Abstract

Results of the experimental study of population inversion in the resonant electronic transition \({B^3}{\pi _g} - {A^3}\sum _u^ + \) of nitrogen ions by optical pumping of atmospheric air and pure nitrogen by a femtosecond laser pulse at a wavelength of 950 nm are presented. It is shown that the inversion results from selective population of the \(N_2^ + \left( {{B^2}\sum _u^ + ,v' = 0} \right)\) excited state during multiphoton excitation of the autoionization state of the nitrogen molecule with an energy of 18.7 eV. Seed photons for superradiance at transitions of molecular nitrogen ions are photons of the axial supercontinuum that occurs in a filament at the corresponding wavelengths. The superradiance mode is implemented at the wavelength λ = 358.4 nm referred to the transition of the CN molecule.

Keywords

filament population inversion femtosecond laser pulse multiphoton ionization molecule ions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. G. Heard, “Ultra-violet gas laser at room temperature,” Nature 200, 667–672 (1963).ADSCrossRefGoogle Scholar
  2. 2.
    A. Svedberg and L. Hogborg, “Observation of superradiant laser action in spark discharges in air at atmospheric pressure,” Appl. Phys. Lett. 12 (3), 102–108 (1968).ADSCrossRefGoogle Scholar
  3. 3.
    V. C. Antonov, I. N. Knyazev, and V. G. Movshev, “Generation UV nitrogen laser in the open air of the cuvette with transverse excitation,” Quantum Electron. 1 (2), 433–435 (1974).Google Scholar
  4. 4.
    S. K. Searles, “Superfluorescent laser emission from electron-beam pumped Ar + N2 mixtures,” Appl. Phys. Lett. 25 (12), 735–737 (1974).ADSCrossRefGoogle Scholar
  5. 5.
    C. B. Collins, A. J. Conningham, and S. M. Curry, “Stimulated emission from charge-transfer reactions in the afterglow of an e-beam discharge in N2 + He high pressure mixtures,” Appl. Phys. Lett. 24 (10), 477–478 (1974).ADSCrossRefGoogle Scholar
  6. 6.
    V. N. Ishchenko, V. N. Lisitsyn, A. M. Razhev, V. N. Starinsky, and P. L. Chapovsky, “The laser,” Opt. Commun. 13 (3), 231–234 (1975).ADSCrossRefGoogle Scholar
  7. 7.
    Q. Luo, W. Lu, and S. L. Chin, “Lasing action in air induced by ultra-fast laser filamentation,” Appl. Phys. B 76 (3), 337–340 (2003).ADSCrossRefGoogle Scholar
  8. 8.
    D. Kartashov, S. Alisauskas, G. Andriukaitis, A. Pugzlys, M. Shneider, A. Zheltikov, S. L. Chin, and A. Baltuska, “Free-space nitrogen gas laser driven by a femtosecond filament,” Phys. Rev., A 86, 033831 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    M. N. Shneider, A. Bakuska, and A. M. Zheltikov, “Population inversion of molecular nitrogen in an Ar: N2 mixture by selective resonance-enhanced multiphoton ionization,” J. Appl. Phys. 110, 083112 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    J. Yao, B. Zeng, H. Xu, G. Li, W. Chu, J. Ni, H. Zhang, S. L. Chin, Y. Cheng, and Z. Xu, “High-brightness switchable multiwavelength remote laser in air,” Phys. Rev., A 84 (5), 051802 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    J. Ni, W. Chu, C. Jing, H. Zhang, B. Zeng, J. Yao, G. Li, H. Xie, C. Zhang, H. Xu, S. L. Chin, Y. Cheng, and Z. Xu, “Identification of the physical mechanism of generation of coherent N2 emissions in air by femtosecond laser excitation,” Opt. Express. 21 (7), 8746–8752 (2013).ADSCrossRefGoogle Scholar
  12. 12.
    J. Yao, G. Li, C. Jing, B. Zeng, W. Chu, J. Ni, H. Zhang, H. Xie, C. Zhang, H. Li, H. Xu, S. L. Chin, Y. Cheng, and Z. Xu, “Remote creation of coherent emissions in air with two-color ultrafast laser pulses,” New J. Phys. 15 (2), 023046 (2013).ADSCrossRefGoogle Scholar
  13. 13.
    V. E. Prokopiev, N. G. Ivanov, D. A. Krivonosenko, and V. F. Losev, “A study of elementary physical processes in the plasma regions filamentation and optical breakdown in the propagation of fs laser pulses with a wavelength of 950 nm in air at atmospheric pressure,” in Program of V Russian Conference “The interaction of highly concentrated flows of energy materials in advanced technology and medicine”, Novosibirsk, March 26–29, 2013 (Parallel’, Novosibirsk, 2013), p.6.Google Scholar
  14. 14.
    V. E. Prokopev, N. G. Ivanov, D. A. Krivonosenko, and V. F. Losev, “Investigation of the elementary physical processes in plasma of filamentation and optical breakdown regions accompanying the propagation of the femtosecond laser pulse with wavelength of 950 nm in air at atmospheric pressure,” Rus. Phys. J. 56 (11), 1274–1280 (2014).CrossRefGoogle Scholar
  15. 15.
    Yi. Liu, Y. Brelet, G. Point, A. Houard, and A. Mysyrowicz, “Self-seeded lasing in ionized air pumped by 800 nm femtosecond laser pulses,” Opt. Express 21 (19), 22791–22798 (2013).ADSCrossRefGoogle Scholar
  16. 16.
    Tie-Jun Wang, Jingjing Ju, Jean-Francois Daigle, Shuai Yuan, Ruxin Li, and Leang Chin See, “Selfseeded forward lasing action from a femtosecond Ti:Sapphire laser filament in air,” Laser Phys. Lett. 10 (12), 1–4 (2013).Google Scholar
  17. 17.
    Tie-Jun Wang, Jean-Francois Daigle, Jingjing Ju, Shuai Yuan, Ruxin Li, and See Leang Chin, “Forward lasing action at multiple wavelengths seeded by white light from a femtosecond laser filament in air,” Phys. Rev., A 88 (5), 053429 (2013).ADSCrossRefGoogle Scholar
  18. 18.
    S. V. Alekseev, N. G. Ivanov, B. M. Koval’chuk, V. F. Losev, G. A. Mesyats, L. D. Mikheev, Yu. Panchenko, N. A. Ratakhin, and A. G. Yastremskii, “Hybrid femtosecond laser system THL-100 on the base of XeF(C–A) amplifier,” Opt. Atmos. Okeana 25 (3), 221–225 (2012).Google Scholar
  19. 19.
    S. V. Alekseev, A. I. Aristov, N. G. Ivanov, B. M. Kovalchuk, V. F. Losev, G. A. Mesyats, L. D. Mikheev, Yu. N. Panchenko, and N. A. Ratakhin, “Multiterawatt femtosecond laser system in the visible with photochemically driven XeF(C-A) boosting amplifier,” Laser Part. Beams 31 (1), 17–21 (2013).ADSCrossRefGoogle Scholar
  20. 20.
    S. V. Alekseev, M. V. Ivanov, N. G. Ivanov, V. F. Losev, G. A. Mesyats, Yu. N. Panchenko, and N. A. Ratakhin, “Parameters of the THL-100 hybrid femtosecond laser system after modernization,” Rus. Phys. J. 58 (8), 1087–1092 (2015).CrossRefGoogle Scholar
  21. 21.
    R. P. Madden and A. G. Parr, “Resonance phenomena in molecular photoionization: Impact of synchrotron radiation,” Appl. Opt. 21 (2), 179–188 (1982).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • N. G. Ivanov
    • 1
    Email author
  • V. F. Losev
    • 1
    • 2
  • V. E. Prokop’ev
    • 1
    • 3
  • K. A. Sitnik
    • 1
  1. 1.Institute of High Current Electronics, Siberian BranchRussian Academy of SciencesTomskRussia
  2. 2.National Research Tomsk Polytechnic UniversityTomskRussia
  3. 3.National Research Tomsk State UniversityTomskRussia

Personalised recommendations