Advertisement

Atmospheric and Oceanic Optics

, Volume 29, Issue 4, pp 381–384 | Cite as

Nd:YAG/Cr:YAG composite laser ceramics

  • S. G. GaraninEmail author
  • V. V. Osipov
  • V. A. Shitov
  • V. I. Solomonov
  • K. E. Lukyashin
  • A. V. Spirina
  • R. N. Maksimov
  • E. V. Pozdnyakov
Optical Sources and Receivers for Environmental Studies
  • 53 Downloads

Abstract

This work reports the synthesis of transparent composite ceramics consisting of Nd:YAG in the central part and Cr4+:YAG in the edge cladding. The central part of ceramics was shaped like 14-mm-diameter disk or 11-mm-side square and an outer diameter of the edge cladding was 18 mm or 23 mm, respectively. The central part of ceramics had an optical transmittance of ~84% at a wavelength of 1.06 µm. The concentration of Cr4+ in Cr4+:YAG ceramics of three different compositions was estimated from the transmission spectra measured and known absorption cross sections. The optimal composition of edge cladding was estimated to be 2.5 mol % Cr + 0.5 mol % Ca + 97 mol % YAG to avoid self-excitation in Nd:YAG.

Keywords

ceramics laser composite transmittance synthesis Nd:YAG Cr:YAG thin disk method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Larionov, F. Dauzinger, Sh. Zommer, and A. Gizen, “Lasers on thin disks. Principle of operation and applications,” Fotonika 15 (3), 2–8 (2009).Google Scholar
  2. 2.
    J. Speiser, “Scaling of thin-disk lasers—influence of amplified spontaneous emission,” J. Opt. Soc. Amer. B 26 (1), 26–35 (2009).ADSCrossRefGoogle Scholar
  3. 3.
    Hideki Yagia, Kazunori Takaichi, Ken-ichi Ueda, Takagimi Yanagitani, and Alexander A. Kaminskii, “Influence of annealing conditions on the optical properties of chromium-doped ceramic Y3Al5O12,” Opt. Mater. 29 (4), 392–396 (2006).ADSCrossRefGoogle Scholar
  4. 4.
    V. V. Osipov, Yu. A. Kotov, M. G. Ivanov, O. M. Samatov, V. V. Lisenkov, V. V. Platonov, A. M. Murzakaev, A. I. Medvedev, and E. I. Azarkevich, “Laser synthesis of nanopowders,” Laser Phys. 16 (1), 116–125 (2006).ADSCrossRefGoogle Scholar
  5. 5.
    S. N. Bagaev, V. V. Osipov, V. I. Solomonov, V. A. Shitov, R. N. Maksimov, K. E. Lukyashin, S. M. Vatnik, and I. A. Vedin, “Fabrication of Nd3+:YAG laser ceramics using various approaches,” Opt. Mater. 34 (8), 1482–1487 (2012).ADSCrossRefGoogle Scholar
  6. 6.
    H. Eilers, K. R. Hoffman, W. M. Dennis, S. M. Jacobsen, and W. M. Yen, “Saturation of 1.064 µm absorption in Cr,Ca:Y3Al5O12 crystals,” Appl. Phys. Lett. 61 (25), 2958–2960 (1992).ADSCrossRefGoogle Scholar
  7. 7.
    X. Zhang, A. Brenier, J. Wang, and H. Zhang, “Absorption cross-sections of Cr4+:YAG at 946 and 914 nm,” Opt. Mater. 26 (3), 293–296 (2004).ADSCrossRefGoogle Scholar
  8. 8.
    H. Eilers, U. Hommerich, S. M. Jacobsen, and W. M. Yen, “Spectroscopy and dynamics of Cr4+:Y3Al5O12,” Phys. Rev., B 49 (22), 15505–15513 (1994).ADSCrossRefGoogle Scholar
  9. 9.
    V. I. Solomonov, S. G. Michailov, A. I. Lipchak, V. V. Osipov, V. G. Shpak, S. A. Shunailov, M. I. Yalandin, and M. R. Ulmaskulov, “CLAVI pulsed cathodoluminescence spectroscope,” Laser Phys. 16 (1), 126–129 (2006).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • S. G. Garanin
    • 1
    Email author
  • V. V. Osipov
    • 2
  • V. A. Shitov
    • 2
  • V. I. Solomonov
    • 2
  • K. E. Lukyashin
    • 2
  • A. V. Spirina
    • 2
  • R. N. Maksimov
    • 2
    • 3
  • E. V. Pozdnyakov
    • 1
  1. 1.Russian Federal Nuclear Center—All-Russian Research Institute of Experimental PhysicsSarovRussia
  2. 2.Institute of Electrophysics, Urals DivisionRussian Academy of SciencesYekaterinburgRussia
  3. 3.B.N. Yeltsin Ural Federal UniversityYekaterinburgRussia

Personalised recommendations