Atmospheric and Oceanic Optics

, Volume 29, Issue 4, pp 371–375 | Cite as

Laser monitor visualization of gas-dynamic processes under pulse-periodic discharges initiated by runaway electrons in atmospheric pressure air

  • D. V. Beloplotov
  • M. V. Trigub
  • V. F. TarasenkoEmail author
  • G. S. Evtushenko
  • M. I. LomaevEmail author
Optical Sources and Receivers for Environmental Studies


Gas-dynamic processes that run in pulse-periodic discharges initiated by runaway electrons in atmospheric pressure air are studied with CuBr-laser based laser monitor and schlieren method. Voltage pulses (U = 13 kV, FWHM is 10 ns, front length is 4 ns, negative polarity, f = 60–3200 Hz) applied to a coneshaped copper cathode with cone base diameter, apex angle, and corner radius of cone vertex of 6 mm, 30°, and 0.2 mm, respectively. A flat copper anode was located at a distance of 2 mm from the cathode. It is established that discharge plasma products with copper vapors are carried in a radial direction along the anode surface to a distance of 24 mm for 2.5 ms. The temperature of the gas heated is ~1 × 103 K. It is shown that the use of the laser monitor in transmitted light provides for contrast images of optical inhomogeneities that appear in gas discharges.


nanosecond pulse-periodic discharge atmospheric pressure air runaway electrons schlieren technique laser monitor copper bromide laser metal vapor jets colored minijets 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Low Temperature Plasma Technology: Methods and Applications, Ed. by Paul K. Chu, Xin Pei Lu (CRC Press. Taylor & Francis Group, Boca Raton, London, New York, 2014).Google Scholar
  2. 2.
    Low Temperature Plasma. Temperature, Fundamentals, Technologies, and Techniques, Ed. by R. Hippler, H. Kersten, M. Schmidt, and K.H. Schoenbach (Wiley, Weinheim, 2008), 2nd ed.Google Scholar
  3. 3.
    D. M. Packan, Repetitive Nanosecond Glow Discharge in Atmospheric Pressure Air (Stanford University, Stanford, 2003).Google Scholar
  4. 4.
    Runaway Electrons Preionized Diffuse Discharges, Ed. by V.F. Tarasenko (Nova Science Publishers, New York, 2014).Google Scholar
  5. 5.
    V. F. Tarasenko, D. V. Beloplotov, M. I. Lomaev, and D. A. Sorokin, “Laboratory observation of mini sprites and blue jets in discharges initiated by runaway electrons,” Opt. Atmos. Okeana 27 (11), 1017–1019 (2014).Google Scholar
  6. 6.
    D. V. Beloplotov, M. I. Lomaev, and V. F. Tarasenko, “On the nature of radiation of blue and green jets in laboratory discharges initiated by runaway electrons,” Atmos. Ocean. Opt. 28 (4), 476–480 (2015).CrossRefGoogle Scholar
  7. 7.
    D. V. Beloplotov, M. I. Lomaev, D. A. Sorokin, and V. F. Tarasenko, “Blue and green jets in laboratory discharges initiated by runaway electrons,” J. Phys.: Conf. Ser. 652, 012012 (2015).ADSGoogle Scholar
  8. 8.
    P. A. Mikheev, A. A. Shepelenko, N. V. Kupryaev, and A. I. Voronov, “Luminescence of copper atoms in the afterglow of DC glow discharge in rapid nitrogen flow,” in Proc. of the 3rd Intern. Symp. on the Theoretical and Applied Plasma Chemistry (IGKhTU, Ivanovo, 2002), Vol. 3, pp. 138–141 [in Russian].Google Scholar
  9. 9.
    G. S. Evtushenko, M. V. Trigub, F. A. Gubarev, T. G. Evtushenko, S. N. Torgaev, and D. V. Shiyanov, “Laser monitor for non-destructive testing of materials and processes shielded by intensive background lighting,” Rev. Sci. Instrum. 85 (3), 033111 (2014).ADSCrossRefGoogle Scholar
  10. 10.
    M. V. Trigub, D. N. Ogorodnikov, and V. A. Dimaki, “Study of metal vapor laser power supply with pulsed charging of storage capacitance,” Opt. Atmos. Okeana 27 (12), 1112–1115 (2014).Google Scholar
  11. 11.
    E. Z. Dashinimaeva, V. V. Vlasov, G. S. Evtushenko, and M. V. Trigub, “Laser monitor for non-destructive testing and diagnostics,” Kontrol’, Diagnostika, No. 11, 44–47 (2014).CrossRefGoogle Scholar
  12. 12.
    D. V. Rybka, M. V. Trigub, D. A. Sorokin, G. S. Evtushenko, and V. F. Tarasenko, “Corona discharge in atmospheric pressure air when using modulated voltage pulses,” Atmos. Ocean. Opt. 27 (6), 582–586 (2014).CrossRefGoogle Scholar
  13. 13.
    S. Tao, Z. Cheng, N. Zheng, Y. Ping, V. F. Tarasenko, E. Kh. Baksht, A. G. Burachenko, and Y. V. Shut’ko, “Diffuse discharge, runaway electron, and X-ray in atmospheric air in an inhomogeneous electric field in repetitive pulsed mode,” Appl. Phys. Lett. 98 (2), 021503 (2011).ADSCrossRefGoogle Scholar
  14. 14.
    T. Shao, V. F. Tarasenko, C. Zhang, E. K. Baksht, P. Yan, and Y. V. Shut’ko, “Repetitive nanosecondpulse discharge in a highly nonuniform electric field in atmospheric air: X-ray emission and runaway electron generation,” Laser Part. Beams 30 (3), 369–378 (2012).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Institute of High Current Electronics, Siberian BranchRussian Academy of SciencesTomskRussia
  2. 2.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia
  3. 3.Tomsk Polytechnical UniversityTomskRussia

Personalised recommendations