Advertisement

Atmospheric and Oceanic Optics

, Volume 29, Issue 3, pp 216–224 | Cite as

Simulation of the vibrational-rotational energy levels of D2 18O, HD18O, D2 17O, and HD17O molecules by the effective Hamiltonian approach

  • I. A. Vasilenko
  • O. V. Naumenko
  • K. V. KalininEmail author
  • A. D. Bykov
Spectroscopy of Ambient Medium

Abstract

The vibrational-rotational energy levels of the first and second triads and the first and second hexads of the D2 18O, HD18O, D2 17O, and HD17O molecules are simulated on the basis of the Watson-type Hamiltonian and the rotation operator written in terms of the Padé–Borel approximants. Rotational, centrifugal distortion, and resonance constants and mixing coefficients of the resulting wave functions are found by the least squares method. The resonance interactions are analyzed. The predictive capability of the effective Hamiltonian parameters found is examined for the long extrapolated rotational quantum numbers.

Keywords

deuterium substituted isotopologues of water vapor vibrational-rotational spectra simulation of energy levels effective rotational Hamiltonian 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Partridge and D. W. Schwenke, “The determination of an accurate isotope dependent potential energy surface for water from extensive ab initio calculations and experimental data,” J. Chem. Phys. 106 (11), 4618–4639 (1997).ADSCrossRefGoogle Scholar
  2. 2.
    O. L. Polyansky, “One-dimensional approximation of the effective rotational Hamiltonian of the ground state of the water molecule,” J. Mol. Spectrosc. 112 (1), 79–87 (1985).ADSCrossRefGoogle Scholar
  3. 3.
    A. D. Bykov, O. V. Naumenko, L. N. Sinitsa, B. A. Voronin, and B. P. Winnewisser, “The 3v2 band of D2 16O,” J. Mol. Spectrosc. 199, 158–165 (2000).ADSCrossRefGoogle Scholar
  4. 4.
    S. N. Mikhailenko, G. Ch. Mellau, E. N. Starikova, S. A. Tashkun, and Vl. G. Tyuterev, “Analysis of the first triad of interacting states (020), (100), and (001) of D2 16O from hot emission spectra,” J. Mol. Spectrosc. 233, 32–59 (2005).ADSCrossRefGoogle Scholar
  5. 5.
    G. Ch. Mellau, S. N. Mikhailenko, E. N. Starikova, S. A. Tashkun, H. Over, and Vl. G. Tyuterev, “Rotational levels of the (000) and (010) states of D2O from hot emission spectra in the 320–860 cm–1 region,” J. Mol. Spectrosc. 224, 32–60 (2004).ADSCrossRefGoogle Scholar
  6. 6.
    A. V. Burenin, “Optimum rational perturbation theory series when treating rotational spectra of nonlinear molecules,” J. Mol. Spectrosc. 140 (1), 54–61 (1990).ADSCrossRefGoogle Scholar
  7. 7.
    L. H. Coudert, “Analysis of the rotational levels of water and determination of the potential energy function for the bending ?2 mode,” J. Mol. Spectrosc. 165 (2), 406–425 (1994).ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    R. Lanquetin, L. H. Coudert, and C. Camy-Peyret, “High-lying rotational levels of water: An analysis of energy levels of the five first vibrationl states,” J. Mol. Spectrosc. 206 (1), 83–103 (2001).ADSCrossRefGoogle Scholar
  9. 9.
    H. M. Pickett, J. C. Pearson, and C. E. Miller, “Use of Euler series to fit spectra with application to water,” J. Mol. Spectrosc. 233 (2), 174–179 (2005).ADSCrossRefGoogle Scholar
  10. 10.
    S. A. Tashkun and T. A. Putilova, “Rotational structure of the 000, 010, 100, 020, and 001 vibrational states of the D2 16O molecule: Spectroscopic assignment of rotational levels up to J, Ka = 30 and analysis of published data,” Opt. Spectrosc. 107 (5), 686–695 (2009).CrossRefGoogle Scholar
  11. 11.
    O. Ulenikov, G. Onopenko, M. Koivusaari, S. Alanko, and R. Anttila, “High resolution vibrational-rotational spectrum of H2S in the region of the 2 fundamental band,” J. Mol. Spectrosc. 176 (2), 236–250 (1996).ADSCrossRefGoogle Scholar
  12. 12.
    A. D. Bykov, O. V. Naumenko, E. R. Polovtseva, S.-M. Hu, and A.-W. Liu, “Fourier transform absorption spectrum of D2 18O in 7360–8440 cm–1 region,” J. Quant. Spectrosc. Radiat. Transfer 111 (15), 2197–2210 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    G. Czako, E. Matyus, and A. G. Csaszar, “Bridging theory with experiment: A benchmark study of thermally averaged structural and effective spectroscopic parameters of the water molecule,” J. Phys. Chem. 113 (43), 11665–11678 (2009).CrossRefGoogle Scholar
  14. 14.
    O. N. Ulenikov, S.-G. He, G. A. Onopenko, E. S. Bekhtereva, X.-H. Wang, S.-M. Hu, H. Lin, and Q.-S. Zhu, “High-resolution study of the (v1 + 12v2 + v3 = 3) polyad of strongly interacting vibrational bands of D2O,” J. Mol. Spectrosc. 204 (2), 216–225 (2000).ADSCrossRefGoogle Scholar
  15. 15.
    S.-G. He, O. N. Ulenikov, G. A. Onopenko, E. S. Bekhtereva, X.-H. Wang, S.-M. Hu, H. Lin, and Q.-S. Zhu, “High-resolution Fourier transform spectrum of the D2O molecule in the region of the second triad of interacting vibrational states,” J. Mol. Spectrosc. 200 (1), 34–39 (2000).ADSCrossRefGoogle Scholar
  16. 16.
    X.-H. Wang, O. N. Ulenikov, G. A. Onopenko, E. S. Bekhtereva, S.-G. He, S.-M. Hu, H. Lin, and Q.-S. Zhu, “High-resolution study of the first hexad of D2O,” J. Mol. Spectrosc. 200 (1), 25–33 (2000).ADSCrossRefGoogle Scholar
  17. 17.
    P. S. Ormsby, K. N. Rao, M. Winnewisser, B. P. Winnewisser, O. V. Naumenko, A. D. Bykov, and L. N. Sinitsa, “The 3v2 + v3, v1 + v2 + v3, v1 + 3v2, 2v1 + v2 and v2 + 3v3 bands of D2 16O,” J. Mol. Spectrosc. 158, 109–130 (1993).ADSCrossRefGoogle Scholar
  18. 18.
    S. M. Hu, O. N. Ulenikov, E. S. Bekhtereva, and G. A. Onopenko, Sheng-Gui He, Hai Lin, Ji-Xin Cheng, and Qing-Shi Zhu, “High-resolution Fouriertransform intracavity laser absorption spectroscopy of D2O in the region of the 41 + 3 band,” J. Mol. Spectrosc. 212 (1), 89–95 (2002).ADSCrossRefGoogle Scholar
  19. 19.
    O. N. Ulenikov, S. M. Hu, E. S. Bekhtereva, G. A. Onopenko, S. G. He, X. H. Wang, J. J. Zheng, and Q. S. Zhu, “High resolution Fourier transform spectrum of D2O in the region near 0.97,” J. Mol. Spectrosc. 210, 18–27 (2001).ADSCrossRefGoogle Scholar
  20. 20.
    J. J. Zheng, O. N. Ulenikov, G. A. Onopenko, E. S. Bekhtereva, S. G. He, X. H. Wang, S. M. Hu, H. Lin, and Q. S. Zhu, “High resolution vibrationrotation spectrum of the D2O molecule in the region near the 2u + u2 + absorption band,” Mol. Phys. 99, 931–937 (2001).ADSCrossRefGoogle Scholar
  21. 21.
    O. V. Naumenko, I. A. Vasilenko, and S. N. Mikhailenko, “(0 0 0) and (0 1 0) energy levels of the HD18O and D2 18O molecules from analysis of their ?2 bands,” J. Mol. Spectrosc. 265 (1), 26–38 (2011).ADSCrossRefGoogle Scholar
  22. 22.
    H.-Y. Ni, A.-W. Liu, K.-F. Song, S.-M. Hu, O. V. Naumenko, T. V. Kruglova, and S. A. Tashkun, “High-resolution spectroscopy of the triple-substituted isotopologue of water molecule D2 18O: The first triad,” Mol. Phys. 106, 1793–1801 (2008).ADSCrossRefGoogle Scholar
  23. 23.
    A.-W. Liu, O. V. Naumenko, S. Kassi, and A. Campargue, “CW-cavity ring down spectroscopy of deuterated water in the 1.58 µm atmospheric transparency window,” J. Quant. Spectrosc. Radiat. Transfer 138, 97–106 (2014).ADSCrossRefGoogle Scholar
  24. 24.
    S. N. Mikhailenko, O. V. Naumenko, A. V. Nikitin, I. A. Vasilenko, A.-W. Liu, K.-F. Song, H.-Y. Ni, and S.-M. Hu, “Absorption spectrum of deuterated water vapor enriched by 18O between 6000 and 9200 cm-1,” J. Quant. Spectrosc. Radiat. Transfer. 113 (9), 653–669 (2012).ADSCrossRefGoogle Scholar
  25. 25.
    A. Perrin, J.-M. Flaud, and C. Camy-Peyret, “Calculated energy levels and intensities for the ?1 and 2?2 bands of HDO,” J. Mol. Spectrosc. 112 (1), 153–162 (1985).ADSCrossRefGoogle Scholar
  26. 26.
    T. Ohshima and H. Sasada, “DFB semiconductor laser spectroscopy of 1.5-deuterated water,” J. Mol. Spectrosc. 136 (2), 250–263 (1989).ADSCrossRefGoogle Scholar
  27. 27.
    O. N. Ulenikov, S. Hu, E. S. Bekhtereva, G. A. Onopenko, X. Wang, S. He, J. Zheng, and Q. Zhu, “High-resolution fourier transform spectrum of HDO in the region 6140–7040 cm–1,” J. Mol. Spectrosc. 208 (2), 224–235 (2001).ADSCrossRefGoogle Scholar
  28. 28.
    A. D. Bykov, B. A. Voronin, O. V. Naumenko, T. M. Petrova, and L. N. Sinitsa, “Spectroscopic constants of the (011), (200), (120), and (040) states of the HD16O molecule,” Atmos. Ocean. Opt. 12 (9), 786–791 (1999).Google Scholar
  29. 29.
    S. Hu, O. N. Ulenikov, G. A. Onopenko, E. S. Bekhtereva, S. He, X. Wang, H. Lin, and Q. Zhu, High-resolution study of strongly interacting vibrational bands of HDO in the region 7600–8100 cm–1,” J. Mol. Spectrosc. 203, 228–234 (2000).ADSCrossRefGoogle Scholar
  30. 30.
    http://spectraiaoruGoogle Scholar
  31. 31.
    R. A. Toth, “HD16O, HD18O and HD17O transition frequencies and strengths in the u2 bands,” J. Mol. Spectrosc. 62, 20–40 (1993).ADSCrossRefGoogle Scholar
  32. 32.
    Robert A. Toth, “HDO and D2O low pressure, long path spectra in the 600–3100 cm-1 region: II. D2O line positions and strengths,” J. Mol. Spectrosc. 195 (1), 98–122 (1999).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • I. A. Vasilenko
    • 1
  • O. V. Naumenko
    • 1
  • K. V. Kalinin
    • 1
    Email author
  • A. D. Bykov
    • 1
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations