Skip to main content
Log in

Simulation of the vibrational-rotational energy levels of D2 18O, HD18O, D2 17O, and HD17O molecules by the effective Hamiltonian approach

  • Spectroscopy of Ambient Medium
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The vibrational-rotational energy levels of the first and second triads and the first and second hexads of the D2 18O, HD18O, D2 17O, and HD17O molecules are simulated on the basis of the Watson-type Hamiltonian and the rotation operator written in terms of the Padé–Borel approximants. Rotational, centrifugal distortion, and resonance constants and mixing coefficients of the resulting wave functions are found by the least squares method. The resonance interactions are analyzed. The predictive capability of the effective Hamiltonian parameters found is examined for the long extrapolated rotational quantum numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Partridge and D. W. Schwenke, “The determination of an accurate isotope dependent potential energy surface for water from extensive ab initio calculations and experimental data,” J. Chem. Phys. 106 (11), 4618–4639 (1997).

    Article  ADS  Google Scholar 

  2. O. L. Polyansky, “One-dimensional approximation of the effective rotational Hamiltonian of the ground state of the water molecule,” J. Mol. Spectrosc. 112 (1), 79–87 (1985).

    Article  ADS  Google Scholar 

  3. A. D. Bykov, O. V. Naumenko, L. N. Sinitsa, B. A. Voronin, and B. P. Winnewisser, “The 3v2 band of D2 16O,” J. Mol. Spectrosc. 199, 158–165 (2000).

    Article  ADS  Google Scholar 

  4. S. N. Mikhailenko, G. Ch. Mellau, E. N. Starikova, S. A. Tashkun, and Vl. G. Tyuterev, “Analysis of the first triad of interacting states (020), (100), and (001) of D2 16O from hot emission spectra,” J. Mol. Spectrosc. 233, 32–59 (2005).

    Article  ADS  Google Scholar 

  5. G. Ch. Mellau, S. N. Mikhailenko, E. N. Starikova, S. A. Tashkun, H. Over, and Vl. G. Tyuterev, “Rotational levels of the (000) and (010) states of D2O from hot emission spectra in the 320–860 cm–1 region,” J. Mol. Spectrosc. 224, 32–60 (2004).

    Article  ADS  Google Scholar 

  6. A. V. Burenin, “Optimum rational perturbation theory series when treating rotational spectra of nonlinear molecules,” J. Mol. Spectrosc. 140 (1), 54–61 (1990).

    Article  ADS  Google Scholar 

  7. L. H. Coudert, “Analysis of the rotational levels of water and determination of the potential energy function for the bending ?2 mode,” J. Mol. Spectrosc. 165 (2), 406–425 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  8. R. Lanquetin, L. H. Coudert, and C. Camy-Peyret, “High-lying rotational levels of water: An analysis of energy levels of the five first vibrationl states,” J. Mol. Spectrosc. 206 (1), 83–103 (2001).

    Article  ADS  Google Scholar 

  9. H. M. Pickett, J. C. Pearson, and C. E. Miller, “Use of Euler series to fit spectra with application to water,” J. Mol. Spectrosc. 233 (2), 174–179 (2005).

    Article  ADS  Google Scholar 

  10. S. A. Tashkun and T. A. Putilova, “Rotational structure of the 000, 010, 100, 020, and 001 vibrational states of the D2 16O molecule: Spectroscopic assignment of rotational levels up to J, Ka = 30 and analysis of published data,” Opt. Spectrosc. 107 (5), 686–695 (2009).

    Article  Google Scholar 

  11. O. Ulenikov, G. Onopenko, M. Koivusaari, S. Alanko, and R. Anttila, “High resolution vibrational-rotational spectrum of H2S in the region of the 2 fundamental band,” J. Mol. Spectrosc. 176 (2), 236–250 (1996).

    Article  ADS  Google Scholar 

  12. A. D. Bykov, O. V. Naumenko, E. R. Polovtseva, S.-M. Hu, and A.-W. Liu, “Fourier transform absorption spectrum of D2 18O in 7360–8440 cm–1 region,” J. Quant. Spectrosc. Radiat. Transfer 111 (15), 2197–2210 (2010).

    Article  ADS  Google Scholar 

  13. G. Czako, E. Matyus, and A. G. Csaszar, “Bridging theory with experiment: A benchmark study of thermally averaged structural and effective spectroscopic parameters of the water molecule,” J. Phys. Chem. 113 (43), 11665–11678 (2009).

    Article  Google Scholar 

  14. O. N. Ulenikov, S.-G. He, G. A. Onopenko, E. S. Bekhtereva, X.-H. Wang, S.-M. Hu, H. Lin, and Q.-S. Zhu, “High-resolution study of the (v1 + 12v2 + v3 = 3) polyad of strongly interacting vibrational bands of D2O,” J. Mol. Spectrosc. 204 (2), 216–225 (2000).

    Article  ADS  Google Scholar 

  15. S.-G. He, O. N. Ulenikov, G. A. Onopenko, E. S. Bekhtereva, X.-H. Wang, S.-M. Hu, H. Lin, and Q.-S. Zhu, “High-resolution Fourier transform spectrum of the D2O molecule in the region of the second triad of interacting vibrational states,” J. Mol. Spectrosc. 200 (1), 34–39 (2000).

    Article  ADS  Google Scholar 

  16. X.-H. Wang, O. N. Ulenikov, G. A. Onopenko, E. S. Bekhtereva, S.-G. He, S.-M. Hu, H. Lin, and Q.-S. Zhu, “High-resolution study of the first hexad of D2O,” J. Mol. Spectrosc. 200 (1), 25–33 (2000).

    Article  ADS  Google Scholar 

  17. P. S. Ormsby, K. N. Rao, M. Winnewisser, B. P. Winnewisser, O. V. Naumenko, A. D. Bykov, and L. N. Sinitsa, “The 3v2 + v3, v1 + v2 + v3, v1 + 3v2, 2v1 + v2 and v2 + 3v3 bands of D2 16O,” J. Mol. Spectrosc. 158, 109–130 (1993).

    Article  ADS  Google Scholar 

  18. S. M. Hu, O. N. Ulenikov, E. S. Bekhtereva, and G. A. Onopenko, Sheng-Gui He, Hai Lin, Ji-Xin Cheng, and Qing-Shi Zhu, “High-resolution Fouriertransform intracavity laser absorption spectroscopy of D2O in the region of the 41 + 3 band,” J. Mol. Spectrosc. 212 (1), 89–95 (2002).

    Article  ADS  Google Scholar 

  19. O. N. Ulenikov, S. M. Hu, E. S. Bekhtereva, G. A. Onopenko, S. G. He, X. H. Wang, J. J. Zheng, and Q. S. Zhu, “High resolution Fourier transform spectrum of D2O in the region near 0.97,” J. Mol. Spectrosc. 210, 18–27 (2001).

    Article  ADS  Google Scholar 

  20. J. J. Zheng, O. N. Ulenikov, G. A. Onopenko, E. S. Bekhtereva, S. G. He, X. H. Wang, S. M. Hu, H. Lin, and Q. S. Zhu, “High resolution vibrationrotation spectrum of the D2O molecule in the region near the 2u + u2 + absorption band,” Mol. Phys. 99, 931–937 (2001).

    Article  ADS  Google Scholar 

  21. O. V. Naumenko, I. A. Vasilenko, and S. N. Mikhailenko, “(0 0 0) and (0 1 0) energy levels of the HD18O and D2 18O molecules from analysis of their ?2 bands,” J. Mol. Spectrosc. 265 (1), 26–38 (2011).

    Article  ADS  Google Scholar 

  22. H.-Y. Ni, A.-W. Liu, K.-F. Song, S.-M. Hu, O. V. Naumenko, T. V. Kruglova, and S. A. Tashkun, “High-resolution spectroscopy of the triple-substituted isotopologue of water molecule D2 18O: The first triad,” Mol. Phys. 106, 1793–1801 (2008).

    Article  ADS  Google Scholar 

  23. A.-W. Liu, O. V. Naumenko, S. Kassi, and A. Campargue, “CW-cavity ring down spectroscopy of deuterated water in the 1.58 µm atmospheric transparency window,” J. Quant. Spectrosc. Radiat. Transfer 138, 97–106 (2014).

    Article  ADS  Google Scholar 

  24. S. N. Mikhailenko, O. V. Naumenko, A. V. Nikitin, I. A. Vasilenko, A.-W. Liu, K.-F. Song, H.-Y. Ni, and S.-M. Hu, “Absorption spectrum of deuterated water vapor enriched by 18O between 6000 and 9200 cm-1,” J. Quant. Spectrosc. Radiat. Transfer. 113 (9), 653–669 (2012).

    Article  ADS  Google Scholar 

  25. A. Perrin, J.-M. Flaud, and C. Camy-Peyret, “Calculated energy levels and intensities for the ?1 and 2?2 bands of HDO,” J. Mol. Spectrosc. 112 (1), 153–162 (1985).

    Article  ADS  Google Scholar 

  26. T. Ohshima and H. Sasada, “DFB semiconductor laser spectroscopy of 1.5-deuterated water,” J. Mol. Spectrosc. 136 (2), 250–263 (1989).

    Article  ADS  Google Scholar 

  27. O. N. Ulenikov, S. Hu, E. S. Bekhtereva, G. A. Onopenko, X. Wang, S. He, J. Zheng, and Q. Zhu, “High-resolution fourier transform spectrum of HDO in the region 6140–7040 cm–1,” J. Mol. Spectrosc. 208 (2), 224–235 (2001).

    Article  ADS  Google Scholar 

  28. A. D. Bykov, B. A. Voronin, O. V. Naumenko, T. M. Petrova, and L. N. Sinitsa, “Spectroscopic constants of the (011), (200), (120), and (040) states of the HD16O molecule,” Atmos. Ocean. Opt. 12 (9), 786–791 (1999).

    Google Scholar 

  29. S. Hu, O. N. Ulenikov, G. A. Onopenko, E. S. Bekhtereva, S. He, X. Wang, H. Lin, and Q. Zhu, High-resolution study of strongly interacting vibrational bands of HDO in the region 7600–8100 cm–1,” J. Mol. Spectrosc. 203, 228–234 (2000).

    Article  ADS  Google Scholar 

  30. http://spectraiaoru

  31. R. A. Toth, “HD16O, HD18O and HD17O transition frequencies and strengths in the u2 bands,” J. Mol. Spectrosc. 62, 20–40 (1993).

    Article  ADS  Google Scholar 

  32. Robert A. Toth, “HDO and D2O low pressure, long path spectra in the 600–3100 cm-1 region: II. D2O line positions and strengths,” J. Mol. Spectrosc. 195 (1), 98–122 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Kalinin.

Additional information

Original Russian Text © I.A. Vasilenko, O.V. Naumenko, K.V. Kalinin, A.D. Bykov, 2016, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasilenko, I.A., Naumenko, O.V., Kalinin, K.V. et al. Simulation of the vibrational-rotational energy levels of D2 18O, HD18O, D2 17O, and HD17O molecules by the effective Hamiltonian approach. Atmos Ocean Opt 29, 216–224 (2016). https://doi.org/10.1134/S1024856016030143

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856016030143

Keywords

Navigation