Water vapor continuum absorption in the 2.7 and 6.25 μm bands at decreased temperatures

Abstract

High-resolution Fourier transform spectroscopy laboratory measurements of pure water vapor absorption have been performed for the first time at temperatures from–9 to 15°С in the near-IR spectral region. As the result, the water vapor continuum absorption is retrieved within 1600 and 3600 cm–1 absorption bands (6.25 and 2.7 μm, respectively). Spectral features of the continuum retrieved at 15°С are in good agreement with the known data. It is shown that different spectral peaks of the continuum have different temperature dependencies.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    K. P. Shine, I. V. Ptashnik, and G. Radel, “The water vapour continuum: brief history and recent developments,” Surv. Geophys. 33, 535–555 (2012).

    ADS  Article  Google Scholar 

  2. 2.

    I. V. Ptashnik, “Water vapour continuum absorption: Short prehistory and current status,” Opt. Atmos. Okeana 28 (5), 443–459 (2015).

    MathSciNet  Google Scholar 

  3. 3.

    G. Radel, K. P. Shine, and I. V. Ptashnik, “Global radiative and climate effect of the water vapour continuum at visible and near-infrared wavelengths,” Q. J. R. Meteorol. Soc. 141 (688), 727–738 (2015).

    ADS  Article  Google Scholar 

  4. 4.

    I. V. Ptashnik, K. M. Smith, K. P. Shine, and D. A. Newnham, “Laboratory measurements of water vapour continuum absorption in spectral region 5000–5600 cm–1: Evidence for water dimers,” Q. J. R. Meteorol. Soc. 130, 2391–2408 (2004).

    ADS  Article  Google Scholar 

  5. 5.

    D. J. Paynter, I. V. Ptashnik, K. P. Shine, and K. M. Smith, “Pure water vapor continuum measurements between 3100 and 4400 cm–1: Evidence for water dimer absorption in near atmospheric conditions,” Geophys. Rev. Lett. 34, L12808 (1–5) (2007).

    Article  Google Scholar 

  6. 6.

    I. V. Ptashnik, “Evidence for the contribution of water dimers to the near-IR water vapour self-continuum,” J. Quant. Spectrosc. Radiat. Transfer 109, 831–852 (2008).

    ADS  Article  Google Scholar 

  7. 7.

    A. A. Vigasin, A. I. Pavlyuchko, Y. Jin, and S. Ikawa, “Density evolution of absorption bandshapes in the water vapour OH-stretching fundamental and overtone: Evidence for molecular aggregation,” J. Mol. Struc. 742 (1–3), 173–181 (2005).

    ADS  Article  Google Scholar 

  8. 8.

    T. A. Odintsova and M. Yu. Tretyakov, “Evidence of true bound and metastable dimers and trimers presence in high temperature water vapor spectra,” J. Quant. Spectrosc. Radiat. Transfer 120, 134–137 (2013).

    ADS  Article  Google Scholar 

  9. 9.

    I. V. Ptashnik, K. P. Shine, and A. A. Vigasin, “Water vapour self-continuum and water dimers. 1. Review and analysis of recent work,” J. Quant. Spectrosc. Radiat. Transfer 112, 1286–1303 (2011).

    ADS  Article  Google Scholar 

  10. 10.

    A. A. Vigasin, “Bound, metastable and free states of bimolecular complexes,” Infrared Phys. 32, 461–470 (1991).

    ADS  Article  Google Scholar 

  11. 11.

    A. A. Vigasin, “Bimolecular absorption in atmospheric gases,” in Weakly Interacting Molecular Pairs: Unconventional Absorbers of Radiation in the Atmosphere, Ed. by C. Camy-Peyret and A. A. Vigasin (Kluwer, Boston; Dordrecht; London, 2003), pp. 23–47.

    Chapter  Google Scholar 

  12. 12.

    Yu. N. Ponomarev, T. M. Petrova, A. M. Solodov, A. A. Solodov, and S. A. Sulakshin, “A Fourier-spectrometer with a 30-m base-length multipass cell for the study of weak absorption spectra of atmospheric gases,” Atmos. Oceanic. Opt. 24 (6), 593–595 (2011).

    Article  Google Scholar 

  13. 13.

    D. J. Paynter, I. V. Ptashnik, K. P. Shine, K. M. Smith, R. McPheat, and R. G. Williams, “Laboratory measurements of the water vapor continuum in the 1200 cm–8000 cm–1 region between 293 and 351 K,” J. Geophys. Res. 114, D21301 (1–23) (2009).

    Article  Google Scholar 

  14. 14.

    A. J. Shillings, S. M. Ball, M. J. Barber, J. Tennyson, and R. L. Jones, “An upper limit for water dimer absorption in the 750 nm spectral region and a revised water line list,” Atmos. Chem. Phys. 10, 23345–23380 (2011).

    Article  Google Scholar 

  15. 15.

    L. S. Rothman, I. E. Gordon, I. E. Babikov, A. Barbe, C. D. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, E. A. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, S. P. Müller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).

    ADS  Article  Google Scholar 

  16. 16.

    E. J. Mlawer, V. H. Payne, J.-L. Moncet, J. S. Delamere, M. J. Alvarado, and D. D. Tobin, “Development and recent evaluation of the MT_CKD model of continuum absorption,” Phil. Trans. Roy. Soc., A 370, 2520–2556 (2012).

    ADS  Article  Google Scholar 

  17. 17.

    I. V. Ptashnik, T. M. Petrova, Yu. N. Ponomarev, K. P. Shine, A. A. Solodov, and A. M. Solodov, “Nearinfrared water vapour self-continuum at close to room temperature,” J. Quant. Spectrosc. Radiat. Transfer 120, 23–35 (2013).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. V. Ptashnik.

Additional information

Original Russian Text © I.V. Ptashnik, T.E. Klimeshina, T.M. Petrova, A.A. Solodov, A.M. Solodov, 2015, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ptashnik, I.V., Klimeshina, T.E., Petrova, T.M. et al. Water vapor continuum absorption in the 2.7 and 6.25 μm bands at decreased temperatures. Atmos Ocean Opt 29, 211–215 (2016). https://doi.org/10.1134/S1024856016030131

Download citation

Keywords

  • continuum absorption
  • water vapor
  • near-IR absorption bands