Atmospheric and Oceanic Optics

, Volume 29, Issue 3, pp 282–287 | Cite as

Daytime sky radiance as a source of information on surface albedo in IR spectral region. Part I

  • V. E. PavlovEmail author
  • S. S. Orlov
  • V. V. Pashnev
Remote Sensing of Atmosphere, Hydrosphere, and Underlying Surface


We suggest a methodical justification of determining the surface albedo in the near-infrared (NIR) region using the observations of spectral atmospheric transparency and daytime clear-sky radiance in solar almucantar. The contribution of the component describing the reflection processes to radiance at different angular distances from the Sun is analyzed. The effect of aerosol absorption on radiance components used in albedo determination is estimated. The solar zenith angle and elongation of aerosol scattering phase function are found to affect the final result of albedo calculation.


infrared spectral region optical depths due to scattering and absorption sky radiance asymmetry of aerosol scattering phase function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Ya. Kondrat’ev, Radiative Parameters of the Atmosphere and Underlying Surface (Gidrometeoizdat, Leningrad, 1969) [in Russian].Google Scholar
  2. 2.
    O. M. Pokrovskii, E. L. Makhotkina, I. O. Pokrovskii, and L. M. Ryabova, “Trends in interannual variations of radiation balance components and land surface albedo in Russia,” Rus. Meteorol. Hydrol., No. 5, 25–32 (2004).Google Scholar
  3. 3.
    V. E. Pavlov and N. V. Khvostova, “Indirect technique for estimation of systematic errors in AERONET sky brightness measurements,” Vestn. KazNU im. Al’-Farabi, Ser. Matematika, Mekhanika, Informatika, No. 4 (S3), 27–31 (2008).Google Scholar
  4. 4.
    V. E. Pavlov, Extended Abstract of Doctoral Dissertation in Mathematics and Physics (Tomsk, 1983) [in Russian].Google Scholar
  5. 5.
    V. E. Pavlov, N. V. Khvostova, M. V. Panchenko, and S. A. Terpugova, “Indirect method for estimation of the errors in measurements of sky irradiance with sunphotometers CIMEL: Calibration by molecular scattering,” Int. J. Remote Sens. 32 (23), 8699–8710 (2011).ADSCrossRefGoogle Scholar
  6. 6.
    Yu. M. Timofeev and A. V. Vasil’ev, Theoretical Foundations of Atmospheric Optics (Nauka, St. Petersburg, 2003) [in Russian].Google Scholar
  7. 7.
    B. M. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. F. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).CrossRefGoogle Scholar
  8. 8.
    G. I. Marchuk, G. A. Mikhailov, M. A. Nazaraliev, et al., Monte Carlo Method in Atmospheric Optics, Ed. by G.I. Marchuk (Nauka, Novosibirsk, 1976).Google Scholar
  9. 9.
    S. A. Ukhinov and A. S. Chimaeva, “Convergence of Monte- Carlo algorithms for reconstructing the scattering phase function with polarization,” Numer. Anal. Appl. 4 (1), 81–92 (2011).CrossRefzbMATHGoogle Scholar
  10. 10.
    V. S. Antyufeev and M. A. Nazaraliev, Inverse Problems of Atmospheric Optics (Vychislitel’nyi tsentr SB AS USSR, Novosibirsk, 1988) [in Russian].zbMATHGoogle Scholar
  11. 11.
    O. T. Dubovik and M. D. King, “A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements,” J. Gephys. Res., D 105 (16), 20673–20696 (2000).ADSCrossRefGoogle Scholar
  12. 12.
    S. Chandrasekhar, Radiative Transfer (Dover, New York, 1950).zbMATHGoogle Scholar
  13. 13.
    K. L. Coulson, J. V. Dave, and Z. Sekera, Tables Related to Radiation Emerging from a Planetary Atmosphere with Rayleigh Scattering (University of California press, Berklay, Los Angeles, 1960).Google Scholar
  14. 14.
    G. Sh. Livshits, Light Scattering in the Atmosphere (Nauka KazSSR, Alma-Ata, 1968) [in Russian].Google Scholar
  15. 15.
    E. M. Feigel’son, M. S. Malkevich, S. Ya. Kogan, T. D. Koronatova, K. S. Glazova, and M. A. Kuznetsova, “Calculation of light intensity in the atmosphere during anisotropic scattering,” in Trudy Instituta Fiziki Atmosfery. Part 1 (1957).Google Scholar
  16. 16.
    V. A. Smerkalov, Applied Atmospheric Optics (Gidrometeoizdat, St. Petersburg, 1997) [in Russian].Google Scholar
  17. 17.
    A. A. Lagutin, Yu. A. Nikulin, I. A. Shmakov, A. P. Zhukov, A. A. Lagutin, A. N. Reznikov, and V. V. Sinitsyn, “Retrieval of Parameters of Underlying Surface in Siberia from MODIS spectroradiometer data,” Vychisl. Tekhnol. 11 (S5), 61–71 (2006).Google Scholar
  18. 18.
    A. Sinyuk, O. Dubovik, B. Holben, T. F. Eck, F.-M. Breon, J. Martonchik, R. Kahn, D. J. Diner, E. F. Vermote, J.-C. Roger, T. Lapyonok, and I. Slutsker, “Simultaneous retrieval of aerosol and surface properties from a combination of AERONET and satellite data,” Remote Sens. Environ. 107, 90–108 (2007).CrossRefGoogle Scholar
  19. 19.
    E. V. Pyaskovskaya-Fesenkova, Study of Light Scattering in the Earth’s Atmosphere (Nauka, Moscow, 1957) [in Russian].Google Scholar
  20. 20.
    T. B. Zhuravleva, “Simulation of solar radiative transfer under different atmospheric conditions. Part I. The deterministic atmosphere,” Atmos. Ocean. Opt. 28 (2), 91–95 (2008).Google Scholar
  21. 21.
    S. Yu. Andreev and T. V. Bedareva, “Computer information system for studying spectral and angular characteristics of solar radiation,” Atmos. Ocean. Opt. 26 (5), 427–431 (2013).CrossRefGoogle Scholar
  22. 22.
    G. V. Rozenberg, G. I. Gorchakov, Yu. S. Georgievskii, and Yu. S. Lyubovtseva, “Optical parameters of atmospheric aerosol,” in Atmospheric Physics and Climate Problems (Nauka, Moscow, 1980), pp. 216–257 [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Institute of Water and Ecological ProblemsBarnaulRussia
  2. 2.Altai State UniversityBarnaulRussia

Personalised recommendations