Advertisement

Atmospheric and Oceanic Optics

, Volume 29, Issue 3, pp 288–297 | Cite as

Multifrequency lidar sounding of air pollution by particulate matter with separation into respirable fractions

  • S. A. LisenkoEmail author
  • M. M. Kugeiko
  • V. V. Khomich
Remote Sensing of Atmosphere, Hydrosphere, and Underlying Surface

Abstract

A technique is considered for retrieving the spatial distributions of respirable fractions of aerosol in the lower atmosphere on the basis of multifrequency lidar sounding data without the use of additional aerosol optical and microphysical parameters along a sounding path. For this purpose, it is suggested to replace the spectral values of the aerosol extinction coefficient involved in lidar equations with the linearly independent parameters of their approximation, and retrieve the spatial distributions of these parameters from the numerical solution of the set of equations composed of all wavelength-time lidar signal samples. As a result, the number of unknowns in the set of equations to be solved is significantly reduced, and its matrix becomes overdetermined, which can be used for selection of physically reasonable values of the aerosol backscattering phase function at the lidar operating wavelengths. An assumption that there are two segments at the sounding path with similar aerosol extinction coefficient profiles is used to determine the lidar calibration constants. An algorithm is suggested for the search for these segments by the wavelength-time structure of a lidar signal. The inverse problem of aerosol light scattering is solved on the basis of stable regression relations between the concentrations of respirable aerosol fractions and approximation parameters of the aerosol extinction spectrum. The stability of the technique developed to the calibration errors and spatial variations in the aerosol backscattering phase function is shown in numerical experiments on laser sounding of aerosol.

Keywords

aerosol respirable particles mass concentration lidar multifrequency sounding calibration optical parameters inverse problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. A. Silva, J. J. West, Y. Zhang, S. C. Anenberg, J. F. Lamarque, D. Shindell, W. J. Collins, S. Dalsoren, G. Faluvegi, G. Folberth, L. W. Horowitz, T. Nagashima, V. Naik, S. Rumbold, R. Skeie, K. Sudo, T. Takemura, D. Bergmann, P. Cameron- Smith, I. Cionni, R. M. Doherty, V. Eyring, B. Josse, I. A. MacKenzie, D. Plummer, M. Righi, D. S. Stevenson, S. Strode, S. Szopa, and G. Zeng, “Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change,” Environ. Res. Lett. 8 (3), 034005 (2013).ADSCrossRefGoogle Scholar
  2. 2.
    V. E. Zuev, V. V. Kaul’, and I. V. Samokhvalov, Laser Sounding of Industrial Aerosols (Nauka, Novosibirsk, 1986) [in Russian].Google Scholar
  3. 3.
    G. M. Krekov, S. I. Kavkyanov, and M. M. Krekova, Interpretation of Atmospheric Optical Sounding Signals (Nauka, Novosibirsk, 1987) [in Russian].Google Scholar
  4. 4.
    V. A. Kovalev and W. E. Eichinger, Elastic Lidar: Theory, Practice, and Analysis Methods (John Wiley & Sons, Hoboken, New Jersey, 2004).CrossRefGoogle Scholar
  5. 5.
    S. A. Lysenko, M. M. Kugeiko, and V. V. Khomich, “Multifrequency lidar probing of the microstructure of multicomponent urban aerosols”, J. Appl. Spectrosc. 82 (1), 111–119 (2015).ADSCrossRefGoogle Scholar
  6. 6.
    S. A. Lysenko, M. M. Kugeiko, and V. V. Khomich, “Technique for determining mass concentrations of aerosol fractions in the surface air from multifrequency lidar sounding data,” Atmos. Ocean. Opt. 28 (5), 455–466 (2015).CrossRefGoogle Scholar
  7. 7.
    S. A. Lysenko and M. M. Kugeiko, “Regression approach to analyzing the informativity and interpretation of aerosol optical measurements,” J. Appl. Spectrosc. 76 (6), 826–832 (2009).ADSCrossRefGoogle Scholar
  8. 8.
    S. A. Lysenko and M. M. Kugeiko, “Retriveal of miscorphysical parameters of stratospheric post-volcanic aerosol from the results of satellite and ground-based multifrequency sounding,” Issled. Zemli Kosmosa, No. 5, 21–33 (2011).Google Scholar
  9. 9.
    S. A. Lysenko and M. M. Kugeiko, “Method for the determination of the concentration of the respirable atmospheric aerosol fraction from the data of three-frequency lidar sensing,” Atmos. Ocean. Opt. 23 (3), 222–228 (2010).CrossRefGoogle Scholar
  10. 10.
    S. A. Lysenko and M. M. Kugeiko, “Determination of the concentration of aerosol particles in a vertical atmospheric column from satellite measurements of the spectral optical depth,” J. Appl. Spectrosc. 78 (5), 738–745 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    S. A. Lysenko and M. M. Kugeiko, “Nephelometric method for measuring mass concentrations of urban aerosols and their respirable fractions,” Atmos. Ocean. Opt. 27 (6), 587–595 (2014).CrossRefGoogle Scholar
  12. 12.
    J. D. Klett, “Stable analytic inversion solution for processing lidar returns,” Appl. Opt. 20 (2), 211–220 (1981).ADSCrossRefGoogle Scholar
  13. 13.
    F. G. Fernald, “Analysis of atmospheric lidar observation: Some comments,” Appl. Opt. 23 (5), 652–653 (1984).ADSCrossRefGoogle Scholar
  14. 14.
    C. Böckmann, U. Wandinger, A. Ansmann, J. Bösenberg, V. Amiridis, A. Boselli, A. Delaval, F. De Tomasi, M. Frioud, I. V. Grigorov, A. Hågård, M. Horvat, M. Iarlori, L. Komguem, S. Kreipl, G. Larcheveque, V. Matthias, A. Papayannis, G. Pappalardo, F. Rocadenbosch, J. António Rodrigues, J. Schneider, V. Shcherbakov, and M. Wiegner, “Aerosol lidar intercomparison in the framework of the EARLINET project. 2. Aerosol backscatter algorithms,” Appl. Opt. 43 (4), 977–989 (2004).ADSCrossRefGoogle Scholar
  15. 15.
    A. M. Obukhov, “About statistically orthogonal expansions of empirical functions,” Izv. Akad. Nauk SSSR, Geofiz, No. 3, 432–439 (1959).Google Scholar
  16. 16.
    V. E Zuev and G. M. Krekov, Optical Models of the Atmosphere (Gidrometeoizdat, Leningrad, 1986) [in Russian].Google Scholar
  17. 17.
    Van der Vorst Henk A., Iterative Krylov Methods for Large Linear Systems (Cambridge University Press, Cambridge, 2003).zbMATHGoogle Scholar
  18. 18.
    A. P. Chaikovskii, A. P. Ivanov, Yu. S. Balin, A. V. El’nikov, G. F. Tulinov, I. I. Plyusnin, O. A. Bukin, B. B. Chen, “CIS-LiNet lidar network for monitoring aerosol and ozone: Methodology and instrumentation,” Atmos. Ocean. Opt. 18 (12), 958–964 (2005).Google Scholar
  19. 19.
    M. Adam, M. Pahlow, V. Kovalev, J. M. Ondov, M. B. Parlange, and N. Nair, “Aerosol optical characterization by nephelemeter and lidar: The Baltimore Supersite experiment during the Canadian forest fire smoke intrusion,” J. Geophys. Res., D 109 (16) (2004). doi 10.1029/2003JD00404710.1029/2003JD004047Google Scholar
  20. 20.
    V. V. Zavyalov, C. C. Marchant, G. E. Bingham, T. D. Wilkerson, J. L. Hatfield, R. S. Martin, P. J. Silva, K. D. Moore, J. Swasey, D. J. Ahlstrom, and T. L. Jones, “Aglite lidar: Calibration and retrievals of well characterized aerosols from agricultural operations using a three-wavelength elastic lidar,” J. Appl. Remote Sens. 3 (1), 033522 (2009).ADSCrossRefGoogle Scholar
  21. 21.
    T. Murayama, N. Sugimoto, I. Uno, K. Kinoshita, K. Aoki, N. Hagiwara, Z. Liu, I. Matsui, T. Sakai, T. Shibata, K. Arao, B.-J. Sohn, J.-G. Won, S.-C. Yoon, T. Li, J. Zhou, H. Hu, M. Abo, K. Iokibe, R. Koga, and Y. Iwasaka, “Ground-based network observation of Asian dust events of April 1998 in east Asia,” J. Geophys. Res., D 106 (16), 18345–18359 (2001).ADSCrossRefGoogle Scholar
  22. 22.
    S. A. Lysenko and M. M. Kugeiko, “Retrieval of optical and microphysical characteristics of postvolcanic stratospheric aerosol from the results of three-frequency lidar sensing,” Atmos. Ocean. Opt. 24 (5), 466–477 (2011).CrossRefGoogle Scholar
  23. 23.
    G. M. Krekov, M. M. Krekova, and A. Ya. Sukhanov, “Estimate of perspective white-light lidar efficiency for sensing of the stratus clouds microphysical parameters: 2. Parametric modification of the iteration method lidar equation solution,” Opt. Atmos. Okeana 22 (8), 795–802 (2009).Google Scholar
  24. 24.
    S. M. Spuler and S. D. Mayor, “Eye-safe aerosol lidar at 1.5 Microns: Progress toward a scanning lidar network,” Proc. SPIE 6681. doi 10.1117/12.739519Google Scholar
  25. 25.
    H. Xia, G. Shentu, M. Shangguan, X. Xia, X. Jia, C. Wang, J. Zhang, J. S. Pelc, M. M. Fejer, Q. Zhang, X. Dou, and J. W. Pan, “Long-range micro-pulse aerosol lidar at 1.5 µm with an upconversion single-photon detector,” Opt. Lett. 40 (7), 1579–1582 (2015).ADSCrossRefGoogle Scholar
  26. 26.
    A. Angstrom, “The parameters of atmospheric turbidity,” Tellus 16 (1), 64–75 (1964).ADSCrossRefGoogle Scholar
  27. 27.
    World Climate Research Programme: A Preliminary Cloudless Standard Atmosphere for Radiation Computation. Report WCP-112, WMO/TD-24 (WMO, Geneva, 1986).Google Scholar
  28. 28.
    G. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, New York, 1983).Google Scholar
  29. 29.
    M. M. Kugeiko and S. A. Lysenko, “Methodological aspects of reconstructing optical characteristics of the atmosphere from data of laser radar measurements,” Atmos. Ocean. Opt. 19 (5), 387–392 (2006).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • S. A. Lisenko
    • 1
    Email author
  • M. M. Kugeiko
    • 1
  • V. V. Khomich
    • 1
  1. 1.Belarusian State UniversityMinskBelarus

Personalised recommendations