Advertisement

Atmospheric and Oceanic Optics

, Volume 29, Issue 3, pp 252–262 | Cite as

The technique for solving the problem of light backscattering by ice crystals of cirrus clouds by the physical optics method for a lidar with zenith scanning

  • A. V. KonoshonkinEmail author
  • N. V. Kustova
  • V. A. Shishko
  • A. G. Borovoi
Optics of Clusters, Aerosols, and Hydrosoles

Abstract

The technique for solving the problem of light backscattering by the physical optics method is considered. Recommendations on carrying out a preliminary estimation of the contribution of geometrical optics beams are given to reduce the list of beams that are necessary for the calculation by a factor of hundreds. The presented empirical estimating formulas and recommendations on choosing the optimum step of numerical integration make it possible to considerably reduce the resource intensity of the physical optics method for specified microphysical models of hexagonal crystalline particles. The obtained results of solving the light scattering problem are freely available in the form of a databank of Mueller matrices.

Keywords

physical optics beam splitting algorithm light scattering ice crystals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. V. Samokhvalov, B. V. Kaul’, S. V. Nasonov, I. V. Zhivotenyuk, and I. D. Bryukhanov, “Backscattering matrix of the mirror-reflecting upper-level cloud layers formed by horizontally oriented crystal particles,” Opt. Atmos. Okeana 25 (5), 403–411 (2012).Google Scholar
  2. 2.
    Yu. S. Balin, B. V. Kaul’, and G. P. Kokhanenko, “Observations of specularly reflective particles and layers in crystal clouds,” Opt. Atmos. Okeana 24 (4), 293–299 (2011).Google Scholar
  3. 3.
    B. V. Kaul’, S. N. Volkov, and I. V. Samokhvalov, “Studies of ice crystal clouds through lidar measurements of backscattering matrices,” Atmos. Ocean. Opt. 16 (4), 325–332 (2003).Google Scholar
  4. 4.
    A. Borovoi, Y. Balin, G. Kokhanenko, I. Penner, A. Konoshonkin, and N. Kustova, “Layers of quasihorizontally oriented ice crystals in cirrus clouds observed by a two-wavelength polarization lidar,” Opt. Express 22 (20), 24566–24573 (2014).ADSCrossRefGoogle Scholar
  5. 5.
    K. Sassen and S. Benson, “A midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing: II. Microphysical properties derived from lidar depolarization,” J. Atmos. Sci. 58 (15), 2103–2112 (2001).ADSCrossRefGoogle Scholar
  6. 6.
    H. M. Cho, P. Yang, G. W. Kattawar, S. L. Nasiri, Y. Hu, P. Minnis, C. Trepte, and D. Winker, “Depolarization ratio and attenuated backscatter for nine cloud types: Analyses based on collocated CALIPSO lidar and MODIS measurements,” Opt. Express 16 (6), 3931–3948 (2014).ADSCrossRefGoogle Scholar
  7. 7.
    V. Noel, H. Chepfer, G. Ledanois, A. Delaval, and P. H. Flamant, “Classification of particle effective shape ratios in cirrus clouds based on the lidar depolarization ratio,” Appl. Opt. 41 (21), 4245–4257 (2002).ADSCrossRefGoogle Scholar
  8. 8.
    K. N. Liou, “Influence of cirrus clouds on weather and climate processes: A global perspective,” Mon. Weather Rev. 114 (6), 1167–1199 (1986).ADSCrossRefGoogle Scholar
  9. 9.
    C. Liu, R. L. Panetta, and P. Yang, “Application of the pseudo-spectral time domain method to compute particle single-scattering properties for size parameters up to 200,” J. Quant. Spectrosc. Radiat. Transfer 113 (13), 1728–1740 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    L. Bi, P. Yang, G. W. Kattawar, B. A. Baum, Y. X. Hu, D. M. Winker, R. S. Brock, and J. Q. Lu, “Simulation of the color ratio associated with the backscattering of radiation by ice particles at the wavelengths of 0.532 and 1.064 µm,” J. Geophys. Res. 114, D00H08 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    Y. Takano and K. N. Liou, “Solar radiative transfer in cirrus clouds. Part I. Singlescattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46 (1), 3–19 (1989).ADSCrossRefGoogle Scholar
  12. 12.
    A. V. Konoshonkin and A. G. Borovoi, “Specular scattering of light on cloud ice crystals and wavy water surface,” Atmos. Ocean. Opt. 26 (5), 438–443 (2013).CrossRefGoogle Scholar
  13. 13.
    A. V. Konoshonkin, N. V. Kustova, and A. G. Borovoi, “Limits to applicability of geometrical optics approximation to light backscattering by quasihorizontally oriented hexagonal ice plates,” Atmos. Ocean. Opt. 28 (1), 74–81 (2015).CrossRefGoogle Scholar
  14. 14.
    A. Borovoi, A. Konoshonkin, and N. Kustova, “The physical-optics approximation and its application to light backscattering by hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 146, 181–189 (2014).ADSCrossRefGoogle Scholar
  15. 15.
    A. V. Konoshonkin, N. V. Kustova, V. A. Osipov, A. G. Borovoi, K. Masuda, H. Ishimoto, and H. Okamoto, “Physical optics approximation for solving problems of light scattering on the ice crystal particles: Comparison of the vector formulations of diffraction,” Opt. Atmos. Okeana 28 (9), 830–843 (2015).Google Scholar
  16. 16.
    L. Bi, P. Yang, G. W. Kattawar, Y. Hu, and B. A. Baum, “Scattering and absorption of light by ice particles: Solution by a new physical-geometric optics hybrid method,” J. Quant. Spectrosc. Radiat. Transfer 112 (9), 1492–508 (2011).ADSCrossRefGoogle Scholar
  17. 17.
    A. V. Konoshonkin, N. V. Kustova, and A. G. Borovoi, “Peculiarities of the depolarization ratio in lidar signals for randomly oriented ice crystals of cirrus clouds,” Opt. Atmos. Okeana 26 (5), 385–387 (2013).Google Scholar
  18. 18.
    A. Borovoi, A. Konoshonkin, N. Kustova, and H. Okamoto, “Backscattering Mueller matrix for quasihorizontally oriented ice plates of cirrus clouds: Application to CALIPSO signals,” Opt. Express 20 (27), 28222–28233 (2012).ADSCrossRefGoogle Scholar
  19. 19.
    A. Borovoi, A. Konoshonkin, and N. Kustova, “Backscatter ratios for arbitrary oriented hexagonal ice crystals of cirrus clouds,” Opt. Lett. 39 (19), 5788–5791 (2014).ADSCrossRefGoogle Scholar
  20. 20.
    A. V. Konoshonkin, N. V. Kustova, and A. G. Borovoi, “Beam splitting algorithm for the problem of light scattering by atmospheric ice crystals. Part 1. Theoretical foundations of the algorithm,” Atmos. Ocean. Opt. 28 (5), 441–447 (2015).CrossRefGoogle Scholar
  21. 21.
    A. V. Konoshonkin, N. V. Kustova, and A. G. Borovoi, “Beam splitting algorithm for the problem of light scattering by atmospheric ice crystals. Part 2. Comparison with the ray tracing algorithm,” Atmos. Ocean. Opt. 28 (5), 448–454 (2015).CrossRefGoogle Scholar
  22. 22.
    D. L. Mitchell, “A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part 1. Microphysics,” J. Atmos. Sci. 51 (6), 797–816 (1994).ADSCrossRefGoogle Scholar
  23. 23.
    A. H. Auer and D. L. Veal, “The dimension of ice crystals in natural clouds,” J. Atmos. Sci. 27 (6), 919–926 (1970).ADSCrossRefGoogle Scholar
  24. 24.
    K. Sato and H. Okamoto, “Characterization of Z(e) and LDR of nonspherical and inhomogeneous ice particles for 95-GHz cloud radar: Its implication to microphysical retrievals.” J. Geophys. Res. 111, D22213 (2006).ADSCrossRefGoogle Scholar
  25. 25.
    A. J. Heymsfield and L. M. Miloshevich, “Parameterizations for the cross-sectional area and extinction of cirrus and stratiform ice cloud particles,” J. Atmos. Sci. 60 (7), 936–956 (2003).ADSCrossRefGoogle Scholar
  26. 26.
    A. J. Heymsfield, A. Bansemer, P. R. Field, S. L. Durden, J. Stith, J. E. Dye, and W. Hall, “Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns,” J. Atmos. Sci. 59 (24), 3457–3491 (2002).ADSCrossRefGoogle Scholar
  27. 27.
    I. V. Samokhvalov, S. V. Nasonov, I. D. Bryukhanov, A.G. Borovoi, B. V. Kaul’, N. V. Kustova, and A. V. Konoshonkin, “Analysis of the backscattering phase matrices of cirrus with anomalous reflection,” Izv. Vuzov, Fiz, No. 8/3, 281–283 (2013).Google Scholar
  28. 28.
    B. V. Kaul’ and I. V. Samokhvalov, “Orientation of particles in Ci crystal clouds. Part 1. Orientation at gravitational sedimentation,” Atmos. Ocean. Opt. 18 (11), 866–870 (2005).Google Scholar
  29. 29.
    B. V. Kaul’ and I. V. Samokhvalov, “Orientation of particles in Ci crystal clouds. Part 2. Azimuth orientation,” Atmos. Ocean. Opt. 19 (1), 39–42 (2006).Google Scholar
  30. 30.
    B. V. Kaul’ and I. V. Samokhvalov, “Physical factors determining the particle spatial orientation in ice clouds,” Atmos. Ocean. Opt. 21 (1), 20–26 (2008).Google Scholar
  31. 31.
    A. Konoshonkin, N. Kustova, and A. Borovoi, “Beamsplitting code for light scattering by ice crystal particles within geometric-optics approximation,” J. Quant. Spectrosc. Radiat. Transfer 164, 175–183 (2015).ADSCrossRefGoogle Scholar
  32. 32.
    A. Borovoi, A. Konoshonkin, and N. Kustova, “Backscattering reciprocity for large particles,” Opt. Lett. 38 (9), 1485–1487 (2013).ADSCrossRefGoogle Scholar
  33. 33.
    A. Borovoi, A. Konoshonkin, and N. Kustova, “Backscattering by hexagonal ice crystals of cirrus clouds,” Opt. Lett. 38 (15), 2881–1884 (2013).ADSCrossRefGoogle Scholar
  34. 34.
    A. Borovoi, N. Kustova, and A. Konoshonkin, “Interference phenomena at backscattering by ice crystals of cirrus clouds,” Opt. Exp. 23 (19), 24557–24571 (2015).ADSCrossRefGoogle Scholar
  35. 35.
    ftp://ftpiaoru/pub/GWDT/Physical_optics/Backsca ttering/Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. V. Konoshonkin
    • 1
    • 2
    Email author
  • N. V. Kustova
    • 2
  • V. A. Shishko
    • 2
  • A. G. Borovoi
    • 1
    • 2
  1. 1.Tomsk State UniversityTomskRussia
  2. 2.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations