Advertisement

Atmospheric and Oceanic Optics

, Volume 29, Issue 3, pp 225–233 | Cite as

Laser beam distortions caused by a shock wave near the turret of a supersonic aircraft

  • V. A. BanakhEmail author
  • A. A. Sukharev
Optics of Stochastically-Heterogeneous Media

Abstract

We present results of calculations of the mean intensity of a beam which passes in the beginning of the path through a shock wave which is formed during a supersonic air flow around the turret and propagates further in a homogeneous medium. It is shown that the spatial inhomogeneity of the air refractive index in the region of a shock wave can lead to strong anisotropic distortions of a beam intersecting the wave; the distortions result in focusing and defragmentation of the beam at comparatively short distances from the turret and rapid degradation of the beam in the process of its further propagation.

Keywords

turret shock wave mean intensity focusing of optical radiation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Frumker and O. Pade, “Generic method for aerooptic evaluations,” Appl. Opt. 43 (16), 3224–3228 (2004).ADSCrossRefGoogle Scholar
  2. 2.
    O. Pade, “Propagation through shear layers,” Proc. SPIE 6364, 63640 (2006).ADSCrossRefGoogle Scholar
  3. 3.
    K. N. Volkov and V. N. Emel’yanov, “Aerooptic effects in a turbulent flow and their simulation,” Tech. Phys. 53 (2), 217–223 (2008).CrossRefGoogle Scholar
  4. 4.
    M. Henriksson, L. Sjöqvist, O. Parmhed, and C. Fureby, “Numerical laser beam propagation using large eddy simnulation of a jet engine flow field,” Opt. Eng. 54 (8), 085101 (2015). doi 10.1117/1.OE.54.8.085101CrossRefGoogle Scholar
  5. 5.
    L. Bo and L. Hong, “Aero-optical characteristics of supersonic flow over blunt wedge with cavity window, J. Shanghai Jiaotong Univ. 16 (6), 742–749 (2011).Google Scholar
  6. 6.
    L. Xu and Y. Cai, “Influence of altitude on aero-optic imaging deviation,” Appl. Opt. 50 (18), 2949–2957 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    M. Wang, A. Mani, and S. Gordeev, “Physics and computation of aero-optics,” Annu. Rev. Fluid Mech. 44, 299–321 (2012).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Q. Gao, S. H. Yi, Z. F. Jiang, L. He, and Y. X Zhao, “Hierarchical structure of the optical path length of the supersonic turbulent boundary layer,” Opt. Express 20, 16494–16503 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    V. A. Banakh, A. A. Sukharev, and A. V. Falits, “Diffraction of the optical beam on a shock wave in the vicinity of a supersonic aircraft,” Opt. Atmos. Okeana 26 (11), 932–941 (2013).Google Scholar
  10. 10.
    V. A. Banakh, A. A. Sukharev, and A. V. Falits, “Optical beam distortions induced by a shock wave,” Appl. Opt. 54 (8), 2023–2031 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    V. A. Banakh, A. A. Sukharev, and A. V. Falits, “Manifestation of aero-optical effects in a turbulent atmosphere in supersonic motion of a conical body,” Atmos. Ocean. Opt. 28 (1), 24–33 (2015).CrossRefGoogle Scholar
  12. 12.
    V. E. Zuev, V. A. Banakh, and V. V. Pokasov, Optics of a Turbulent Atmosphere. Modern Problems of Atmospheric Optics (Gidrometeoizdat, Leningrad, 1988), Vol. 5 [in Russian].Google Scholar
  13. 13.
    V. P. Kandidov, “Monte Carlo method in nonlinear statistical optics,” Phys.-Uspekhi 39 (12), 1243–1272 (1996).ADSCrossRefGoogle Scholar
  14. 14.
    A. S. Gurvich, A. I. Kon, V. L. Mironov, and S. S. Khmelevtsov, Laser Radiation in a Turbulent Atmosphere (Nauka, Moscow, 1976) [in Russian].Google Scholar
  15. 15.
    D. C. Wilcox, Turbulence modeling for CFD (DCW Industries, Inc., La Canada, California, 2006).Google Scholar
  16. 16.
    V. A. Banakh, D. A. Marakasov, and A. A. Sukharev, “Reconstruction of the structural characteristic of the refractive index and average air density in a shock wave arising in a supersonic flow past obstacles from optical measurements,” Opt. Spectrosc. 111 (6), 967–972 (2011).CrossRefGoogle Scholar
  17. 17.
    K. Wang and M. Wang, “Aero-optics of subsonic turbulent boundary layers,” J. Fluid Mech. 696, 122–151 (2012).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Q. Gao, S. H. Yi, Z. F. Jiang, L. He, and Xi Wang, “Structure of the refractive index distribution of the supersonic turbulent boundary layer,” Opt. Laser. Eng. 51 (9) 1113–1119 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations