Advertisement

Atmospheric and Oceanic Optics

, Volume 29, Issue 2, pp 186–190 | Cite as

Application of MTP-5PE meteorological temperature profiler in an airport for determining spatial zones of possible aircraft Icing

  • V. V. ZuevEmail author
  • D. P. Nakhtigalova
  • A. P. Shelekhov
  • E. A. Shelekhova
  • A. V. Pavlinskii
  • N. A. Baranov
  • L. I. Kizhner
Optical Instrumentation

Abstract

We present the results of applying the MTP-5PE meteorological temperature profiler for determining the spatial zones of possible aircraft icing in Tomsk airport on March 17, 2013. The spatial zones were determined using the RAP-algorithm, the Godske formula, as well as the AMIS-RF data for retrieving the humidity profile. The RAP algorithm and the Godske formula are shown to predict similar locations of spatial zones of possible aircraft icing. However, the RAP results are closer to the actual icing reports available from aircraft crews.

Keywords

icing profile temperature relative humidity dew point temperature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. R. Ivanova, “An experience of the humidity forecasts verification and assessment of their applicability in forecasting of the aircraft icing zones,” Rus. Meteorol. Hydrol., No. 6, 354–353 (2009).MathSciNetCrossRefGoogle Scholar
  2. 2.
    E. R. Westwater, Y. Han, V. G. Irisov, V. Leuskiy, E. N. Kadygrov, and A. S. Viazankin, “Remote sensing of boundary layer temperature profiles by a scanning 5-mm microwave radiometer and RASS: Comparison experiments,” J. Atmos. Ocean. Technol. 16 (7), 805–818 (1999).ADSCrossRefGoogle Scholar
  3. 3.
    E. N. Kadygrov and D. R. Pick, “The potential for temperature retrieval from an angular-scanning singlechannel microwave radiometer and some comparisons with in situ observations,” Meteorol. Appl. 5 (4), 393–404 (1998).ADSCrossRefGoogle Scholar
  4. 4.
    E. N. Kadygrov, E. V. Gan’shin, E. A. Miller, and T. A. Tochilkina, “Ground-based microwave temperature profilers: Potential and experimental data,” Atmos. Ocean. Opt. 28 (6), 598–605 (2015).CrossRefGoogle Scholar
  5. 5.
    V. V. Zuev, A. P. Shelekhov, E. A. Shelekhova, A. V. Starchenko, A. A. Bart, N. N. Bogoslovskii, S. A. Prokhanov, and L. I. Kizhner, “Measurementcalculation complex for monitoring and forecasting meteorological situations at airports,” Atmos. Ocean. Opt. 27 (1), 100–105 (2014).CrossRefGoogle Scholar
  6. 6.
    G. Thompson, R. T. Bruintjes, B. G. Brown, and F. Hage, “Intercomparison of in-flight icing algorithms. Part 1: WISP94 real-time icing prediction and evaluation program,” Weather Forecast 12, 848–889 (1997).ADSGoogle Scholar
  7. 7.
    A. M. Baranov and S. V. Solonin, Aviation Meteorology, 2nd ed. (Gidrometeoizdat, Leningrad, 1981) [in Russian].Google Scholar
  8. 8.
    M. G. Lawrence, “The relationship between relative humidity and the dewpoint temperature in moist air: A simple conversion and applications,” Bull. Amer. Meteorol. Soc. 86 (2), 225–233 (2005).ADSCrossRefGoogle Scholar
  9. 9.
    Instructions for Forecasting Services: Part 2: Weather Forecasting Service. Sections 1 and 2 (Gidrometeoizdat, Leningrad, 1974) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • V. V. Zuev
    • 1
    • 2
    Email author
  • D. P. Nakhtigalova
    • 1
    • 3
  • A. P. Shelekhov
    • 1
  • E. A. Shelekhova
    • 1
  • A. V. Pavlinskii
    • 1
  • N. A. Baranov
    • 4
  • L. I. Kizhner
    • 2
  1. 1.Institute of Monitoring of Climatic and Ecologic SystemsTomskRussia
  2. 2.National Research Tomsk State UniversityTomskRussia
  3. 3.West Siberian Branch of “Aviamettelecom Roshydromet”NovosibirskRussia
  4. 4.Dorodnitsyn Computing CenterRussian Academy of SciencesMoscowRussia

Personalised recommendations