Skip to main content
Log in

On the effect of stratification of atmospheric optical characteristics on the sky radiance in the solar principal plane

  • Atmospheric Radiation, Optical Weather, and Climate
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The detailed information on the “in situ” vertical distribution of optical characteristics of atmospheric aerosol is frequently absent because of the complexity and high cost of environmental monitoring from aircraft. This paper presents estimates of the atmospheric optical characteristic stratification effects on downward scattered radiation measured by a sun photometer at the Earth’s surface for two basic viewing geometries: in the solar almucantar and in the solar principal plane. We obtained estimates on the basis of numerical experiments, key parameters of which imitate both background (areas with low anthropogenic load) and extreme atmospheric situations (urban smog, dust haze over land, and dust outflow over water surface). In the visible spectral region, outside the oxygen, ozone, water vapor, and nitrogen dioxide absorption bands, the stratification of the atmospheric optical characteristics is shown to have no significant effect on the sky radiance in solar almucantar, however becoming important in the solar principal plane. The main factor is the vertical behavior of the aerosol extinction coefficient. The radiance calculation errors can be substantially reduced by using the simplest vertical profiles and, in particular, the exponential distribution of the extinction coefficient over height.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66 (1), 1–16 (1998).

    Article  Google Scholar 

  2. O. Dubovik and M. King, “A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements,” J. Geophys. Res., 105 (16), 20673–20696 (2000).

    Article  ADS  Google Scholar 

  3. T. Nakajima, G. Tonna, R. Rao, and B. N. Holben, “Use of sky brightness measurements from ground for remote sensing of particulate polydispersions,” Appl. Opt. 35 (15), 2672–2686 (1996).

    Article  ADS  Google Scholar 

  4. A. Lopatin, O. Dubovik, A. Chaikovsky, P. Goloub, T. Lapyonok, D. Tanre, and P. Litvinov, “Enhancement of aerosol characterization using synergy of lidar and sun-photometer coincident observations: The GARRLiC algorithm,” Atmos. Meas. Tech. 6 (8), 2065–2088 (2013).

    Article  Google Scholar 

  5. F. J. Olmo, A. Quirantes, V. Lara, H. Lyamani, and L. Alados-Arboledas, “Aerosol optical properties assessed by an inversion method using the solar principal plane for non-spherical particles,” J. Quant. Spectrosc. Radiat. Transfer 109 (8), 1504–1516 (2008).

    Article  ADS  Google Scholar 

  6. B. Torres, O. Dubovik, C. Toledano, A. Berjon, V. E. Cachorro, T. Lapyonok, P. Litvinov, and P. Goloub, “Sensitivity of aerosol retrieval to geometrical configuration of ground-based sun/sky radiometer observations,” Atmos. Chem. Phys. 14 (2), 847–875 (2014).

    Article  ADS  Google Scholar 

  7. O. Dubovik, A. Smirnov, B. Holben, M. King, Y. Kaufman, T. Eck, and I. Slutsker, “Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements,” J. Geophys. Res., 105 (8), 9791–9806 (2000).

    Article  ADS  Google Scholar 

  8. B. N. Holben, T. F. Eck, I. Slutsker, A. Smirnov, A. Sinyuk, J. Schafer, D. Giles, and O. Dubovik, “AERONET’s Version 2.0 quality assurance criteria,” Proc. SPIE 6408, 64080Q (2006).

    Article  ADS  Google Scholar 

  9. A. Sinyuk, O. Dubovik, B. Holben, T. F. Eck, F.-M. Breon, J. Martonchik, R. Kahn, D. J. Diner, E. F. Vermote, J.-C. Roger, T. Lapyonok, and I. Slutsker, “Simultaneous retrieval of aerosol and surface properties from a combination of AERONET and satellite,” Remote Sens. Environ. 107 (1–2), 90–108 (2007).

    Article  Google Scholar 

  10. M. V. Panchenko, T. B. Zhuravleva, S. A. Terpugova, V. V. Polkin, and V. S. Kozlov, “An empirical model of optical and radiative characteristics of the tropospheric aerosol over West Siberia in summer,” Atmos. Meas. Tech. 5 (7), 1513–1527 (2012).

    Article  Google Scholar 

  11. R. R. Rogers, J. W. Hair, C. A. Hostetler, R. A. Ferrare, M. D. Obland, A. L. Cook, D. B. Harper, S. P. Burton, Y. Shinozuka, C. S. McNaughton, A. D. Clarke, J. Redemann, P. B. Russell, J. M. Livingston, and L. I. Kleinman, “NASA LaRC airborne high spectral resolution lidar measurements during MILAGRO: observations and validation,” Atmos. Chem. Phys. 9 (14), 4811–4826 (2009).

    Article  ADS  Google Scholar 

  12. L. T. Molina, S. Madronich, J. S. Gaffney, E. Apel, B. de Foy, J. Fast, R. Ferrare, S. Herndon, J. L. Jimenez, B. Lamb, A. R. Osornio-Vargas, P. Russell, J. Schauer, P. S. Stevens, R. Volkamer, and M. Zavala, “An overview of the MILAGRO 2006 Campaign: Mexico City emissions and their transport and transformation,” Atmos. Chem. Phys. 10 (18), 8697–8760 (2010).

    Article  ADS  Google Scholar 

  13. B. Heese, D. Althausen, T. Dinter, M. Esselborn, T. Mueller, M. Tesche, and M. Weigner, “Vertically resolved dust optical properties during SAMUM: Tinfou compared to Quarzazate,” Tellus 61 (1), 195–205 (2009).

    Article  Google Scholar 

  14. P. Liu, C. S. Zhao, Q. Zhang, Z. Deng, M. Huang, X. Ma, and X. Tie, “Aircraft study of aerosol vertical distributions over Beijing and their optical properties,” Tellus B 61 (5), 756–767 (2009).

    Article  ADS  Google Scholar 

  15. J. W. Hair, C. A. Hostetler, A. L. Cook, D. B. Harper, R. A. Ferrare, T. L. Mack, W. Welch, L. R. Izquierdo, and F. E. Hovis, “Airborne High Spectral Resolution Lidar for profiling aerosol optical properties,” Appl. Opt. 47 (36), 6734–6753 (2008).

    Article  ADS  Google Scholar 

  16. G. I. Marchuk, G. A. Mikhailov, M. A. Nazaraliev, R. A. Darbinyan, B. A. Kargin, and B. S. Elepov, Monte Carlo Method in Atmospheric Optics (Nauka, Novosibirsk, 1976) [in Russian].

    Google Scholar 

  17. V. S. Komarov and N. Ya. Lomakina, Statistical Models of the Boundary Air Layer in Western Siberia (Publishing House of IAO SB RAS, Tomsk, 2008) [in Russian].

    Google Scholar 

  18. S. J. Hook, ASTER Spectral Library: Johns Hopkins University (JHU) spectral library; Jet Propulsion Laboratory (JPL) spectral library; The United States Geological Survey (USGS-Reston) spectral library. http://speclib. jplnasagov.

  19. Albedo and Angular Parameters of Reflection by Underlying Surface and Clouds, Ed. by K.Ya. Kondrat’ev (Gidrometeoizdat, Leningrad, 1981) [in Russian].

  20. M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: The software package OPAC,” Bull. Am. Meteorol. Soc. 79 (5), 831–844 (1998).

    Article  ADS  Google Scholar 

  21. V. E. Zuev and M. V. Kabanov, Optics of Atmospheric Aerosol (Gidrometeoizdat, Leningrad, 1987) [in Russian].

    Google Scholar 

  22. Estimation and Control of the Natural Environment Quality, Ed. by A.F. Poryadin and A.D. Khovanskii (Ministry of Environmenta of the RF; Priboi, Moscow, 1996) [in Russian].

  23. G. Sh. Livshits, Scattering of Dayglow (Nauka, AlmaAta, 1973) [in Russian].

    Google Scholar 

  24. P. Koepke, J. Gasteiger, and M. Hess, “Technical note: Optical properties of desert aerosol with non-spherical mineral particles: Data incorporated to OPAC,” Atmos. Chem. Phys. 15 (10), 5947–5956 (2015).

    Article  ADS  Google Scholar 

  25. M. I. Mishchenko and L. D. Travis, “Capabilities and limitations of a current Fortran implementation of the T-Matrix method for randomly oriented, rotationally symmetric scatterers,” J. Quant. Spectrosc. Radiat. Transfer 60 (3), 309–324 (1998).

    Article  ADS  Google Scholar 

  26. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

    Google Scholar 

  27. T. V. Bedareva, M. A. Sviridenkov, and T. B. Zhuravleva, “Retrieval of dust aerosol optical and microphysical properties from ground-based Sun-sky radiometer measurements in approximation of randomly oriented spheroids,” J. Quant. Spectrosc. Radiat. Transfer 146, 140–157 (2014).

    Article  ADS  Google Scholar 

  28. P. A. Lewandowski, W. E. Eichinger, H. Holder, J. Prueger, J. Wang, and L. I. Kleinman, “Vertical distribution of aerosols in the vicinity of Mexico City during MILAGRO-2006 Campaign,” Atmos. Chem. Phys. 10 (3), 1017–1030 (2010).

    Article  ADS  Google Scholar 

  29. K. Ya. Kondrat’ev, N. I. Moskalenko, and D. V. Pozdnyakov, Atmospheric Aerosol (Gidrometeoizdat, Leningrad, 1983) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Russkova.

Additional information

Original Russian Text © T.V. Russkova, M.A. Sviridenkov, T.B. Zhuravleva, 2015, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Russkova, T.V., Sviridenkov, M.A. & Zhuravleva, T.B. On the effect of stratification of atmospheric optical characteristics on the sky radiance in the solar principal plane. Atmos Ocean Opt 29, 175–185 (2016). https://doi.org/10.1134/S1024856016020111

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856016020111

Keywords

Navigation