Advertisement

Atmospheric and Oceanic Optics

, Volume 29, Issue 2, pp 152–161 | Cite as

Determining the parameters of wave disturbances of the middle atmosphere from lidar measurements

  • V. A. KorshunovEmail author
  • D. S. Zubachev
Remote Sensing of Atmosphere, Hydrosphere, and Underlying Surface
  • 20 Downloads

Abstract

Altitude profiles of temperature of the middle atmosphere (30–60 km) are determined from data of lidar sensing at wavelengths of 355 and 532 nm using a modified Rayleigh method. Temperature disturbances are discriminated against the background of average profiles, using a smoothing spline. The altitude profiles of the potential energy density of gravity waves are calculated directly according to temperature fluctuations. A continuous wavelet analysis is used to determine the spectral characteristics of wave disturbances, including local power spectra of temperature fluctuations and potential energy, as well as vertical phase velocity and period for extracted wavelengths. The developed software tools make it possible to determine the characteristics of the wave disturbances localized in time and identified with respect to wavelengths of wave disturbances (wave packets). Lidar measurements in Obninsk are described.

Keywords

lidar gravity waves middle atmosphere wavelet analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. C. Fritts and M. J. Alexander, “Gravity wave dynamics and effects in the middle atmosphere,” Rev. Geophys. 41 (1), 1003 (2003).ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    M. J. Alexander, M. Geller, C. McLandress, S. Polavarapu, P. Preusse, F. Sassi, K. Sato, S. Eckermann, M. Ern, A. Hertzog, Y. Kawatani, M. Pulido, T. A. Shaw, M. Sigmond, R. Vincentk, and S. Watanabei, “Recent developments in gravity-wave effects in climate models and the global distribution of gravitywave momentum flux from observations and models,” Quant. J. Roy. Meteorol. Soc. 136, 1103–1124 (2010).Google Scholar
  3. 3.
    P. N. Vargin, E. M. Volodin, A. Yu. Karpechko, and A. I. Pogorel’tsev, “About stratospheric interactions,” Vestn. Ross. Akad. Nauk 85 (1), 39–46 (2015).Google Scholar
  4. 4.
    M.-L. Chanin and A. Hauchecorne, “Lidar observation of gravity and tidal waves in the stratosphere and mesosphere,” J. Geophys. Res., 86 (10), 9715–9721 (1981).ADSCrossRefGoogle Scholar
  5. 5.
    X. Gao, J. W. Meriwether, V. B. Wickwar, T. D. Wilkerson, and S. Collins, “Raylegh lidar measurements of the temporal frequency and vertical wavenumber spectra in the mesosphere over rocky mountain region,” J. Geophys. Res., D 103 (6), 6405–6416 (1998).ADSCrossRefGoogle Scholar
  6. 6.
    J. A. Whiteway and A. I. Carswell, “Lidar observations of gravity wave activity in the upper stratosphere over Toronto,” J. Geophys. Res., 100 (7), 14113–14124 (1995). doi 10.1029/95JD00511ADSCrossRefGoogle Scholar
  7. 7.
    K. P. Marsh, N. J. Mitchell, and L. Thomas, “Lidar studies of stratospheric gravity wave spectra,” Planet. Space Sci. 39 (11), 1541–1548 (1991).ADSCrossRefGoogle Scholar
  8. 8.
    K. Sato and M. Yamada, “Vertical structure of stratospheric gravity waves revealed by the wavelet analyses,” J. Geophys. Res., 99 (10), 20623–20631 (1994).ADSCrossRefGoogle Scholar
  9. 9.
    M. J. Alexander, “Gravity waves in the stratosphere,” in The Stratosphere: Dynamics, Chemistry, and Transport, Ed. by L. M. Polvani, A. Sobel, and D. W. Waugh, Geophysical Monograph Series. Vol. 190 (Wiley, 2010), pp. 109–121.CrossRefGoogle Scholar
  10. 10.
    V. A. Korshunov and D. S. Zubachev, “Observation of polar stratospheric clouds over Obninsk in December 2012,” Rus. Meteorol. Hydrol. 39 (4), 240–244 (2014).CrossRefGoogle Scholar
  11. 11.
    V. A. Korshunov, D. S. Zubachev, E. G. Merzlyakov, and Ch. Jacobi, “Aerosol parameters of middle atmosphere measured by two-wavelength lidar sensing and their comparison with radio meteor echo measurements,” Atmos. Ocean. Opt. 28 (1), 82–88 (2015).CrossRefGoogle Scholar
  12. 12.
    A. Hauchecorne and M. L. Chanin, “Density and temperature profiles obtained by lidar between 35 and 70 km,” Geophys. Rev. Lett. 7 (8), 565–568 (1980).ADSCrossRefGoogle Scholar
  13. 13.
    A. A. Cheremisin, P. V. Novikov, I. S. Shnipov, V. V. Bychkov, and B. M. Shevtsov, “Lidar observations and formation mechanism of the structure of stratospheric and mesospheric aerosol layers over Kamchatka,” Geomag. Aeron. (Engl. Trans.) 52 (5), 653–663 (2012).ADSCrossRefGoogle Scholar
  14. 14.
    J. McDonald, L. Thomas, and D. P. Wareing, “Nightto-night changes in the characteristics of gravity waves at stratospheric and lower-mesospheric heights,” Ann. Geophys. 16 (2), 229–237 (1998).ADSCrossRefGoogle Scholar
  15. 15.
    M. Rauthe, M. Gerding, and F.-J. Lubken, “Seasonal changes in gravity wave activity measured by lidars at mid-latitudes,” Atmos. Chem. Phys. 8 (22), 6775–6787 (2008).ADSCrossRefGoogle Scholar
  16. 16.
    R. Wilson, M. L. Chanin, and A. Hauchecorne, “Gravity waves in the middle atmosphere observed by Rayleigh lidar. 2. Climatology,” J. Geophys. Res., 96 (3), 5169–5183 (1991).ADSCrossRefGoogle Scholar
  17. 17.
    N. K. Smolentsev, Foundations of the Wavelet Theory. Wavelets in MATLAB (DMK Press, Moscow, 2005) [in Russian].Google Scholar
  18. 18.
    C. Torrence and G. P. Compo, “A practical guide to wavelet analysis,” Bull. Amer. Meteorol. Soc. 79 (1), 61–78 (1998).ADSCrossRefGoogle Scholar
  19. 19.
    M. Rauthe, M. Gerding, J. Hoffner, and F.-J. Lubken, “Lidar temperature measurements of gravity waves over Kuhlungsborn (54° N) from 1 to 105 km: A wintersummer comparison,” J. Geophys. Res. 111, D24108 (2006).ADSCrossRefGoogle Scholar
  20. 20.
    E. Dewan, “Saturated-cascade similitude theory of gravity wave spectra,” J. Geophys. Res., 102 (25), 29799–29817 (1997).ADSCrossRefGoogle Scholar
  21. 21.
    X. Zhu, Z. Shen, S. D. Eckermann, M. Bittner, I. Hirota, and J.-H. Yee, “Gravity wave characteristics in the middle atmosphere derived from the empirical mode decomposition method,” J. Geophys. Res., 102 (14), 16545–16561 (1997).ADSCrossRefGoogle Scholar
  22. 22.
    S. D. Eckermann, “Effect of background winds on vertical wavenumber spectra of atmospheric gravity waves,” J. Geophys. Res., 100 (7), 14097–14112 (1995).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Research and Production Association TaifunObninskRussia

Personalised recommendations