Skip to main content
Log in

Microstructure of the multiple filamentation region of femtosecond laser radiation in a solid dielectric

  • Nonlinear Optics
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Properties of multiple filamentation of gigawatt femtosecond laser pulses in optical glass are considered. The fine structure of the plasma region that is produced upon photoionization of quartz and accompanies light filaments are analyzed experimentally and in numerical simulation. The dependence of the number, position, and length of individual generations of plasma channels on the laser energy is studied for the first time. The role of pulse refocusing events in the plasma region formation is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Askar’yan, “Effect of the high-power electromagnetic beam field gradient on electrons and atoms,” Zh. Eksperim. Teor. Fiz. 42 (6), 1567–1570 (1962).

    Google Scholar 

  2. Self-focusing: Past and Present, Ed. by Y.R. Shen, R.W. Boyd, and S.G. Lukishova (Springer, Berlin, 2009).

  3. S. V. Chekalin and V. P. Kandidov, “From self-focusing light beams to femtosecond laser pulse filamentation,” Phys.-Uspekhi 56 (2), 123–140 (2013).

    Article  ADS  Google Scholar 

  4. A. Houard, Y. Liu, and A. Mysyrowicz, “Recent developments in femtosecond filamentation,” J. Phys., Conf. Ser. 497, 012001 (2014).

    Article  ADS  Google Scholar 

  5. V. I. Bespalov and V. I. Talanov, “Filamentary structure of light beams in non-linear liquids,” J. Exp. Theor. Phys. Lett. 3 (12), 307–310 (1966).

    Google Scholar 

  6. M. Mlejnek, M. Kolesik, J. V. Moloney, and E. M. Wright, “Optically turbulent femtosecond light guide in air,” Phys. Rev. Lett. 83 (15), 2938–2941 (1999).

    Article  ADS  Google Scholar 

  7. W. Liu, S. A. Hosseini, Q. Luo, B. Ferland, S. L. Chin, O. G. Kosareva, N. A. Panov, and V. P. Kandidov, “Experimental observation and simulations of the selfaction of white light laser pulse propagating in air,” New J. Phys. 6 (6), 6–22 (2004).

    Article  ADS  Google Scholar 

  8. S. L. Chin, S. Petit, W. Liu, A. Iwasaki, M. -C. Nadeau, V. P. Kandidov, O. G. Kosareva, and K. Yu. Andrianov, “Interference of transverse rings in multifilamentation of powerful femtosecond laser pulses in air,” Opt. Commun. 210 (9), 329–341 (2002).

    Article  ADS  Google Scholar 

  9. S. L. Chin, A. Talebpour, J. Yang, S. Petit, V. P. Kandidov, O. G. Kosareva, and M. P. Tamarov, “Filamentation of femtosecond laser pulses in turbulent air,” Appl. Phys. B 74, 67–76 (2002).

    Article  ADS  Google Scholar 

  10. G. Paunescu, G. Spindler, W. Riede, H. Schröder, and A. Giesen, “Multifilamentation of femtosecond laser pulses induced by small-scale air turbulence,” Appl. Phys. B 96, 175–183 (2009).

    Article  ADS  Google Scholar 

  11. L. Berge, S. Skupin, F. Lederer, G. Mejean, J. Yu, J. Kasparian, E. Salmon, J. P. Wolf, M. Rodriguez, L. Woste, R. Bourayou, and R. Sauerbrey, “Multiple filamentation of terawatt laser pulses in air,” Phys. Rev. Lett. 92, 225002 (2004).

    Article  ADS  Google Scholar 

  12. S. A. Hosseini, Q. Luo, B. Ferland, W. Liu, S. L. Chin, O. G. Kosareva, N. A. Panov, N. Akozbek, and V. Kandidov, “Competition of multiple filaments during the propagation of intense femtosecond laser pulses,” Phys. Rev., 70, 033802 (2004).

    Article  ADS  Google Scholar 

  13. S. A. Shlenov and V. P. Kandidov, “Filament bunch formation upon femtosecond laser pulse propagation through the turbulent atmosphere. Part 2. Statistical characteristics,” Atmos. Ocean. Opt. 17 (8), 571–575 (2004).

    Google Scholar 

  14. O. G. Kosareva, N. A. Panov, and V. P. Kandidov, “Scenario of multiple filamentation and supercontinuum generation in a high-power femtosecond laser pulse,” Atmos. Ocean. Opt. 18 (3), 204–211 (2005).

    Google Scholar 

  15. V. D. Zvorykin, A. A. Ionin, A. O. Levchenko, L. V. Seleznev, D. V. Sinitsyn, I. V. Smetanin, N. N. Ustinovskii, and A. V. Shutov, “Extended plasma channels created by UV laser in air and their application to control electric discharges,” Plasma Phys. Rep. 41 (2), 112–146 (2015).

    Article  ADS  Google Scholar 

  16. H. Schroeder and S. L. Chin, “Visualization of the evolution of multiple filaments in methanol,” Opt. Commun. 234 (2), 399–406 (2004).

    Article  ADS  Google Scholar 

  17. Z. Hao, K. Stelmaszczyk, P. Rohwetter, W. M. Nakaema, and L. Woeste, “Femtosecond laser filament-fringes in fused silica,” Opt. Express. 19 (8), 7799–7806 (2011).

    Article  ADS  Google Scholar 

  18. J. Yang and G. Mu, “Multi-dimensional observation of white-light filaments generated by femtosecond laser pulses in condensed medium,” Opt. Express 15 (8), 4943–4952 (2007).

    Article  ADS  Google Scholar 

  19. O. G. Kosareva, V. P. Kandidov, A. Brodeur, and S. Chin, “From filamentation in condensed media to filamentation in gases,” J. Nonlin. Opt. Phys. Mater. 6 (4), 485–494 (1997).

    Article  ADS  Google Scholar 

  20. Yu. E. Geints, D. V. Apeksimov, and A. V. Afonasenko, Hardand Software Complex for Analyzing Laser Beam Transverse Profiles (Profiler), State Registration Cert. of Computer Program No. 2014616871 (2014).

    Google Scholar 

  21. V. P. Kandidov, E. O. Smetanina, A. E. Dormidonov, V. O. Kompanets, and S. V. Chekalin, “Formation of conical emission of supercontinuum during filamentation of femtosecond laser radiation in fused silica,” J. Exp. Theor. Phys. 140 (3), 422–432 (2011).

    Article  ADS  Google Scholar 

  22. Yu. E. Geints, A. A. Zemlyanov, A. M. Kabanov, and G. G. Matvienko, Nonlinear Femtosecond Atmospheric Optics, Ed. by A.A. Zemlyanov (Publishing House of IAO SB RAS, Tomsk, 2010) [in Russian].

  23. Yu. E. Geints, A. D. Bulygin, and A. A. Zemlyanov, “Model description of intense ultra-short laser pulse filamentation: Multiple foci and diffraction rays,” Appl. Phys. 107, 243–255 (2012).

    Article  Google Scholar 

  24. X. Lu, Q. Liu, Z. Liu, S. Sun, P. Ding, B. Ding, and B. Hu, “Measurement of nonlinear refractive index coefficient using emission spectrum of filament induced by gigawatt-femtosecond pulse in BK7 glass,” Appl. Opt. 51 (12), 2045–2050 (2012).

    Article  ADS  Google Scholar 

  25. O. G. Kosareva, T. Nguyen, N. A. Panov, W. Liu, A. Saliminia, V. P. Kandidov, N. Akozbek, M. Scalora, R. Vallee, and S. L. Chin, “Array of femtosecond plasma channels in fused silica,” Opt. Commun. 276 (6), 511–523 (2006).

    Article  ADS  Google Scholar 

  26. A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses,” Phys. Rev. B 71, 125435 (2005).

    Article  ADS  Google Scholar 

  27. L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” J. Exp. Theor. Phys. 20 (5), 1307 (1965).

    MathSciNet  Google Scholar 

  28. S. Tzortzakis, L. Berge, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and fusion of self-guided femtosecond light pulses in air,” Phys. Rev. Lett. 86 (24), 5470–5473 (2001).

    Article  ADS  Google Scholar 

  29. A. A. Zemlyanov and Yu. E. Geints, “Evolution of effective characteristics of laser beam of femtosecond duration upon self-action in a gas medium,” Opt. Spectrosc. 104 (5), 772–783 (2008).

    Article  ADS  Google Scholar 

  30. C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials,” Opt. Express 17 (5), 3531–3542 (2009).

    Article  ADS  Google Scholar 

  31. M. Durand, A. Houard, B. Prade, A. Mysyrowicz, A. Durecu, B. Moreau, D. Fleury, O. Vasseur, H. Borchert, K. Diener, R. Schmitt, F. Theberge, M. Chateauneuf, J.-F. Daigle, and J. Dubois, “Kilometer range filamentation,” Opt. Express 21 (22), 26836–26845 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. E. Geints.

Additional information

Original Russian Text © Yu.E. Geints, S.S. Golik, A.A. Zemlyanov, A.M. Kabanov, 2015, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geints, Y.E., Golik, S.S., Zemlyanov, A.A. et al. Microstructure of the multiple filamentation region of femtosecond laser radiation in a solid dielectric. Atmos Ocean Opt 29, 141–151 (2016). https://doi.org/10.1134/S1024856016020068

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856016020068

Keywords

Navigation