Advertisement

Atmospheric and Oceanic Optics

, Volume 29, Issue 2, pp 119–126 | Cite as

Atmospheric radiative transfer simulation in water vapor total content retrievals using different spectroscopic databanks of H2O absorption line parameters

  • T. Yu. ChesnokovaEmail author
  • A. V. Chentsov
  • K. M. Firsov
Spectroscopy of Ambient Medium
  • 25 Downloads

Abstract

Simulation results for atmospheric absorption spectra of solar radiation in spectral intervals, where measurement of H2O content can be carried out, are presented. A comparison with the measured atmospheric transmission spectra of solar radiation is made. The water vapor total column is retrieved from the measured atmospheric spectra with the use of different spectroscopic databanks of H2O absorption lines under various atmospheric conditions and solar zenith angles.

Keywords

atmospheric radiative transfer water vapor content spectroscopic databanks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    http://www. ipcc.chGoogle Scholar
  2. 2.
    V. E. Zuev and V. S. Komarov, Statistical Models of the Temperature and Gaseous Components of the Atmosphere (D. Reidel Publishing Company, Dordrecht, 1987).Google Scholar
  3. 3.
    http://modis-atmosgsfc. nasagov/Google Scholar
  4. 4.
    http://airsjplnasagov/data/overviewGoogle Scholar
  5. 5.
    http://aeronetgsfcnasagov/Google Scholar
  6. 6.
    http://wwwndscncepnoaa. gov/Google Scholar
  7. 7.
    D. Wunch, G. C. Toon, J.-F. L. Blavier, R. A. Washenfelder, J. Notholt, B. J. Connor, D. W. T. Griffith, V. Sherlock, and P. O. Wennberg, “The total carbon column observing network,” Phil. Tran. Royal Soc., 369 (1943), 2087–2112 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    A. O. Semenov, Ya. A. Virolainen, Yu. M. Timofeev, and A. V. Poberovskii, “Comparison of ground-based FTIR and radio sounding measurements of water vapor total content,” Atmos. Ocean. Opt. 28 (2), 121–125 (2015).CrossRefGoogle Scholar
  9. 9.
    M. W. Shephard, S. A. Clough, V. H. Paynel, W. L. Smith, S. Kireev, and K. E. Cady-Pereira, “Performance of the line-by-line radiative transfer model (LBLRTM) for temperature and species retrievals: IASI case studies from JAIVEx,” Atmos. Chem. Phys. 9, 7397–7417 (2009).ADSCrossRefGoogle Scholar
  10. 10.
    M. Milz, N. Glatthor, G. P. Stiller, and T. von Clarmann, “Dependence of water vapour results for MIPAS/Envisat on the spectral lines used for the retrieval,” Geophys. Res. Abstracts 7, 07234 (2005).Google Scholar
  11. 11.
    C. Frankenberg, P. Bergamaschi, A. Butz, S. Houweling, J. F. Meirink, J. Notholt, A. K. Petersen, H. Schrijver, T. Warneke, and I. Aben, “Tropical methane emissions: A revised view from SCIAMACHY onboard ENVISAT,” Geophys. Res. Lett. 35, L15811 (2008).ADSCrossRefGoogle Scholar
  12. 12.
    T. Yu. Chesnokova, V. Boudon, T. Gabard, K. G. Gribanov, V. I. Zakharov, and K. M. Firsov, “Near-infrared radiative transfer modeling to retrieve atmospheric methane total amount,” in Solar Radiation: Protection, Management and Measurement Techniques, Ed. by Fatih Onur Hocaoglu (Nova Science Publishers, N.Y., 2012).Google Scholar
  13. 13.
    T. Yu. Chesnokova, V. A. Kapitanov, Yu. N. Ponomarev, and K. Yu. Osipov, “High resolution spectra of methane and interfering gases and their application to the atmospheric radiative transfer simulation in the methane concentration retrieval tasks,” in Methane in the Environment: Occurrence, Uses and Production, Ed. by Angelo Basile (Nova Science Publishers, N.Y., 2013).Google Scholar
  14. 14.
    L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and Auwera J. Vander, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110 (9–10), 533–572 (2009).ADSCrossRefGoogle Scholar
  15. 15.
    L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrink, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).ADSCrossRefGoogle Scholar
  16. 16.
    L. Lodi, J. Tennyson, and O. L. Polyansky, “A global, high accuracy ab initio dipole moment surface for the electronic ground state of the water molecule,” J. Chem. Phys. 135 (3), 034113–10 (2011).ADSCrossRefGoogle Scholar
  17. 17.
    L. Lodi and J. Tennyson, “Line lists for H2 18O and H2 17O based on empirical line positions and ab initio intensities,” J. Quant. Spectrosc. Radiat. Transfer 113 (11), 850–858 (2012).ADSCrossRefGoogle Scholar
  18. 18.
    N. Jacquinet-Husson, L. Crepeau, R. Armante, C. Boutammine, A. Chedin, N. A. Scott, C. Crevoisier, V. Capelle, C. Boone, N. Poulet-Crovisier, A. Barbe, A. D. C. Benner, Y. Benilan, B. Bezard, V. Boudon, L. R. Brown, L. H. Coudert, A. Coustenis, V. Dana, V. M. Devi, S. Fally, A. Fayt, J.-M. Flaud, A. Goldman, M. Herman, G. J. Harris, D. Jacquemart, A. Jolly, I. Kleiner, A. Kleinbohl, F. Kwabia-Tchana, N. Lavrentieva, N. Lacome, Li-Hong Xu, O. M. Lyulin, J.-Y. Mandin, A. Maki, S. Mikhailenko, C. E. Miller, T. Mishina, N. Moazzen-Ahmadi, H. S. P. Müller, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, D. T. Petkie, A. Predoi-Cross, C. P. Rinsland, J. J. Remedios, M. Rotger, M. A. H. Smith, K. Sung, S. Tashkun, J. Tennyson, R. A. Toth, A.-C. Vandaele, and Auwera J. Vander, “The 2009 edition of the GEISA spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 112 (15), 2395–2445 (2011).ADSCrossRefGoogle Scholar
  19. 19.
    H. Partridge and D. Schwenke, “The determination of an accurate isotope dependent potential energy surface for water from extensive ab initio calculations and experimental data,” J. Chem. Phys. 106 (11), 4618–4639 (1997).ADSCrossRefGoogle Scholar
  20. 20.
    R. J. Barber, J. Tennyson, G. J. Harris, and R. N. Tolchenov, “A high accuracy computed water line list—BT2,” Mon. Notic. Roy. Astron. Soc. 368, 1087 (2006).ADSCrossRefGoogle Scholar
  21. 21.
    S. N. Mikhailenko, K. A. K. Albert, G. Mellau, S. Klee, B. P. Winnewisser, M. Winnewisser, and V. G. Tyuterev, “Water vapor absorption line intensities in the 1900–6600 cm–1 region,” J. Quant. Spectrosc. Radiat. Transfer 109 (16), 2687–2696 (2008).ADSCrossRefGoogle Scholar
  22. 22.
    S. N. Mikhailenko, Le W., S. Kassi, and A. Campargue, “Weak water absorption lines around 1.455 and 1.66 µm by CW-CRDS,” J. Mol. Spectrosc. 244 (2), 170–178 (2007).ADSCrossRefGoogle Scholar
  23. 23.
    A. Jenouvrier, L. Daumont, L. Regali-Jarlot, V. G. Tyuterev, M. Carleer, A. C. Vandaele, S. Mikhailenko, and S. Fally, “Fourier Transform Measurements of water vapor line parameters in the 4200–6600 cm–1 region,” J. Quant. Spectrosc. Radiat. Transfer 105 (2), 326–355 (2007).ADSCrossRefGoogle Scholar
  24. 24.
    J. L. Shillings, S. M. Ball, M. J. Barber, J. Tennyson, and R. L. Jones, “An upper limit for water dimer absorption in the 750 nm spectral region and a revised water line list,” Atmos. Chem. Phys. 11 (9), 4273–4287 (2011).ADSCrossRefGoogle Scholar
  25. 25.
    T. Yu. Chesnokova, B. A. Voronin, A. D. Bykov, T. B. Zhuravleva, A. V. Kozodoev, A. A. Lugovskoy, and J. Tennyson, “Calculation of solar radiation atmospheric absorption with different H2O spectral line data banks,” J. Mol. Spectrosc. 256 (1), 41–44 (2009).ADSCrossRefGoogle Scholar
  26. 26.
    L. H. Coudert, G. Wagner, M. Birk, Yu. I. Baranov, W. J. Lafferty, and J.-M. Flaud, “The H16 2O molecule: Line position and line intensity analyses up to the second triad,” J. Mol. Spectrosc. 251 (1–2), 339–357 (2008).ADSCrossRefGoogle Scholar
  27. 27.
    R. Tolchenov and J. Tennyson, “Water line parameters from refitted spectra constrained by empirical upper state levels: study of the 9500–14500 cm–1 region,” Quant. Spectrosc. Radiat. Transfer 109 (8), 559–568 (2008).ADSCrossRefGoogle Scholar
  28. 28.
    B. A. Voronin, T. P. Mishina, N. N. Lavrentyeva, T. Y. Chesnokova, M. J. Barber, and J. Tennyson, “Estimation of the J'J dependence of water vapor line broadening parameters,” J. Quant. Spectrosc. Radiat. Transfer 111 (15), 2308–2314 (2010).ADSCrossRefGoogle Scholar
  29. 29.
    G. Anderson, S. Clough, F. Kneizys, J. Chetwynd, and E. Shettle, AFGL Atmospheric Constituent Profiles (0–120 km), AFGL-TR; 86–0110. Environmental research papers, No. 954 (Air Force Geophysics Laboratory, 1986).Google Scholar
  30. 30.
    http:// wwwremotesensingru/fts_stahtmlGoogle Scholar
  31. 31.
    E. Kalnay, M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, A. Leetmaa, B. Reynolds, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K. C. Mo, C. Ropelewski, J. Wang, R. Jenne, and D. Joseph, “The NCEP/NCAR 40-year reanalysis project,” Bull. Amer. Meteorol. Soc. 77, 437–471 (1996).ADSCrossRefGoogle Scholar
  32. 32.
    A. N. Zaidel’, G. V. Ostrovskaya, and Yu. I. Ostrovskii, Technique and Practice of the Spectroscopy (Nauka, Moscow, 1972) [in Russian].Google Scholar
  33. 33.
    J. Fontenla, O. R. White, P. A. Fox, E. H. Avrett, and R. L. Kurucz, “Calculation of solar irradiances. I. Synthesis of the solar spectrum,” Astrophys. J. 518 (1), 480–500 (1999).ADSCrossRefGoogle Scholar
  34. 34.
    http://kuruczharvardedu/sun/irradiance2008/Google Scholar
  35. 35.
    M. Palm, “Theoretical background SFIT,” in Proc. of Sfit4 Error Analysis Workshop, Tsukuba, Japan, June 2013.Google Scholar
  36. 36.
    MODIS Terra and Aqua Monthly Level-3. Data Atmosphere Monthly Global 1X1 Degree Products. URL: http: //gdata1scigsfcnasagov/daac-bin/G3/guicgi? instance_id=MODIS_ MONTHLY_L3.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • T. Yu. Chesnokova
    • 1
    Email author
  • A. V. Chentsov
    • 1
  • K. M. Firsov
    • 2
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia
  2. 2.Volgograd State UniversityVolgogradRussia

Personalised recommendations