Dependence of Zeeman splitting of spectral lines on the magnetic field magnitude for NO molecule

Abstract

The paper presents an overview of experimental and theoretical results, which were obtained from the study of the dependence of Zeeman splitting of the vibrational-rotational lines of the 0–1 band of the nitric oxide molecule absorption spectra on the magnetic field magnitude. The experiments were performed at the Laboratory of Gas Lasers of P.N. Lebedev Physical Institute, Russian Academy of Sciences (FIAN). The method of laser magnetic resonance (LMR) with the use of a continuous-wave frequency-tunable CO laser were used to record the spectra. The theoretical analysis of LMR spectrograms was carried out at the Laboratory of Theoretical Spectroscopy of V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences (IAO SB RAS), where the numerical model was developed based on construction of the total effective Hamiltonian of the molecule accounting the interaction with an external magnetic field. The model allows calculation of LMR spectra under given conditions and description of the nonlinear dependence of splitting of rovibrational energy levels on the magnetic field magnitude. The comparison of calculated and experimental LMR spectrograms has shown that the numerical model adequately reproduces the positions of absorption peaks measured in a damped oscillating magnetic field.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    B. D. Belan, “Ozone in troposphere. 5. Gases as ozone precursors,” Opt. Atmos. Okeana 22 (3), 230–268 (2009).

    Google Scholar 

  2. 2.

    S. Moncada, R. M. Palmer, and E. A. Higgs, “Nitric oxide: Physiology, pathophysiology, and pharmacology,” Pharmacol. Rev. 43 (2), 109–142 (1991).

    Google Scholar 

  3. 3.

    A. Kaldor, W. B. Olson, and A. Maki, “Pollution monitor for nitric oxide: A laser device based on the zeeman modulation of absorption,” Science 176, 508–510 (1971).

    ADS  Article  Google Scholar 

  4. 4.

    P. A. Bonczyk and C. J. Ultee, “Nitric oxide detection by use of Zeeman-effect and CO laser,” Opt. Commun. 6 (2), 196–198 (1972).

    ADS  Article  Google Scholar 

  5. 5.

    P. Murtz, L. Menzel, W. Bloch, A. Hess, O. Michel, and W. Urban, “LMR spectroscopy: A new sensitive method for on-line recording of nitric oxide in breath,” J. Appl. Physiol. 86 (3), 1075–1080 (1999).

    Google Scholar 

  6. 6.

    V. P. Gavrilenko, “Spectroscopic methods for measurements of magnetic fields in plasma,” in Encyclopaedia of Low-Temperature Plasma (Nauka, Moscow, 2000), pp. 556–558 [in Russian].

    Google Scholar 

  7. 7.

    J. H. Van Vleck, “On s-type doubling and electron spin in the spectra of diatomic molecules,” Phys. Rev. 33 (1), 467–506 (1929).

    ADS  Article  MATH  Google Scholar 

  8. 8.

    J. H. Van Vleck, “The coupling of angular momentum vectors in molecules,” Rev. Mod. Phys. 23 (3), 213–227 (1951).

    ADS  Article  MATH  Google Scholar 

  9. 9.

    K. F. Freed, “Theory of the hyperfine structure of molecules: Application to 3 states of diatomic molecules intermediate between Hund’s cases (a) and (b),” J. Chem. Phys. 45 (11), 4214–4241 (1966).

    ADS  Article  Google Scholar 

  10. 10.

    W. L. Meerts and A. Dymanus, “The hyper fine ?-doubling spectra of 14N16O and 15N16O,” J. Mol. Spectrosc. 44 (2), 320–346 (1972).

    ADS  Article  Google Scholar 

  11. 11.

    L. Veseth, “Hund’s coupling case (c) in diatomic molecules. I. Theory,” J. Phys., 6 (8), 1473–1483 (1973).

    ADS  Google Scholar 

  12. 12.

    R. N. Zare, A. L. Schmeltekopf, W. J. Harrop, and D. L. Albritton, “A direct approach for the reduction of diatomic spectra to molecular constants for the construction of RKR potentials,” J. Mol. Spectrosc. 46 (1), 37–66 (1973).

    ADS  Article  Google Scholar 

  13. 13.

    J. L. Femenias, “Etude des molecules diatomiques. Partie I. Hamiltonians,” Can. J. Phys. 55 (20), 1733–1774 (1977).

    ADS  Article  Google Scholar 

  14. 14.

    J. M. Brown, E. A. Colbourn, J. K. G. Watson, and F. D. Wayne, “An effective Hamiltonian for diatomic molecules. Ab initio calculations of parameters of HCl+,” J. Mol. Spectrosc. 74 (2), 294–318 (1979).

    ADS  Article  Google Scholar 

  15. 15.

    J.T. Hougen, The calculation of Rotational Energy Levels and Rotational Line Intensities in Diatomic Molecules (U.S. Government printing office, Washington, D.C., 1970), p. 49.

    Google Scholar 

  16. 16.

    J. Brown and A. Carrington, Rotational Spectroscopy of Diatomic Molecules (Cambridge University Press, Cambridge, 2003).

    Book  Google Scholar 

  17. 17.

    R. Beringer and J. G. Castle, “Magnetic resonance absorption in nitric oxide,” Phys. Rev. 78 (5), 581–586 (1950).

    ADS  Article  Google Scholar 

  18. 18.

    M. Mizushima, J. T. Cox, and W. Gordy, “Zeeman effect in the rotational spectrum of NO,” Phys. Rev. 98 (4), 1034–1039 (1955).

    ADS  Article  Google Scholar 

  19. 19.

    R. Beringer, E. B. Rawson, and A. F. Henry, “Microwave resonance in nitric oxide: Lambda doubling and hyperfine structure,” Phys. Rev. 94 (2), 343–349 (1954).

    ADS  Article  Google Scholar 

  20. 20.

    M. Mizushima, K. M. Evenson, and J. S. Wells, “Laser magnetic resonance of the NO molecule using 78-, 79-, and 119-µm H2O laser lines,” Phys. Rev., 5 (5), 2276–2287 (1972).

    ADS  Article  Google Scholar 

  21. 21.

    K. W. Nill, F. A. Blum, A. R. Calawa, and T. C. Harman, “Observation of -doubling and Zeeman splitting in the fundamental infrared absorption band of nitric oxide,” Chem. Phys. Lett. 14 (2), 234–238 (1972).

    ADS  Article  Google Scholar 

  22. 22.

    H. J. Zeiger, F. A. Blum, and K. W. Nill, “Observation of strong nonlinearities in the high field Zeeman spectrum of NO at 1876 cm–1,” J. Chem. Phys. 59 (8), 3968–3970 (1973).

    ADS  Article  Google Scholar 

  23. 23.

    W. L. Meerts and L. Veseth, “The Zeeman spectrum of the NO molecule,” J. Mol. Spectrosc. 82 (1), 202–213 (1980).

    ADS  Article  Google Scholar 

  24. 24.

    K. M. Evenson, “Far-infrared laser magnetic resonance,” Faraday Discuss. Chem. Soc. 71 (1), 7–14 (1981).

    Article  Google Scholar 

  25. 25.

    A. R. W. McKellar, “Mid-infrared laser magnetic resonance spectroscopy,” Faraday Discuss. Chem. Soc. 71 (1), 63–76 (1981).

    Article  Google Scholar 

  26. 26.

    K. M. Evenson, R. D. Saykally, D. A. Jennigs, R. F. Carl, jr., and J. M. Brown, “Laser magnetic resonance in the far-infrared region,” in Application of Lasers in Spectroscopy and Photochemistry (Mir, Moscow, 1983) [in Russian].

  27. 27.

    L. Krasnoperov, “Application of laser magnetic resonance for the study of processes with participation of free radicals in the gaseous phase,” in Plasma Chemistry (Energoatomizdat, Moscow, 1987), Vol. 14, pp. 151–194 [in Russian].

    Google Scholar 

  28. 28.

    J. M. Brown, “Infrared laser spectroscopy,” in Applied Laser Spectroscopy, Ed. by M. Inguscio and W. Demtroder (Plenum Press, 1995), pp. 189–214.

    Google Scholar 

  29. 29.

    K. Hakuta and H. Uehara, “Laser Magnetic Resonance for the v = 1 0 transition of NO (2?3/2) by CO laser,” J. Mol. Spectrosc. 58 (2), 316–322 (1975).

    ADS  Article  Google Scholar 

  30. 30.

    R. M. Dale, J. W. C. Johns, A. R. W. McKellar, and M. Riggin, “High-resolution laser magnetic resonance and infrared-radiofrequency double-resonance spectroscopy of NO and Its Isotopes Near 5.4 µm,” J. Mol. Spectrosc. 67 (1–3), 440–458 (1977).

    ADS  Article  Google Scholar 

  31. 31.

    C. C. Lin and M. Mizushima, “Theory of the hyperfine structure of the NO molecule. II. Errata and some additionnal discussion,” Phys. Rev. 100 (6), 1726–1730 (1955).

    ADS  Article  Google Scholar 

  32. 32.

    Y. Liu, Y. Guo, H. Liu, J. Lin, X. Liu, G. Huang, F. Li, and J. Li, “On the nonlinearity of the Zeeman effect of NO in the moderate field by intracavity laser magnetic resonance at 1842 cm–1,” Phys. Lett., 272 (1), 80–85 (2000).

    Article  Google Scholar 

  33. 33.

    R. P. Andrusenko, A. A. Ionin, Yu. M. Klimachev, A. A. Kotkov, and A. Yu. Kozlov, “Nonlinear Zeeman splitting of nitric oxide spectral lines in magnetic field,” Proc. SPIE—Int. Soc. Opt. Eng. 6729, 672923 (2007).

    Google Scholar 

  34. 34.

    K. Takazawa and H. Abe, “Electronic spectra of gaseous nitric oxide in magnetic fields up to 10 T,” J. Chem. Phys. 110 (19), 9492–9499 (1999).

    ADS  Article  Google Scholar 

  35. 35.

    K. Takazawa, H. Abe, and H. Wada, “Zeeman electronic spectra of gaseous NO in very high magnetic fields up to 25 T,” Chem. Phys. Lett. 329 (5), 405–411 (2000).

    ADS  Article  Google Scholar 

  36. 36.

    A. A. Ionin, Yu. M. Klimachev, A. Yu. Kozlov, and A. A. Kotkov, Preprint No. 18, FIAN (Physical Institute, Russian Academy of Sciences, 2009).

    Google Scholar 

  37. 37.

    A. O. Dorokhov, Yu. M. Klimachev, A. A. Ionin, A. A. Kotkov, A. Yu. Kozlov, “Zeeman effect in the IR-region at NO molecule transitions,” in Proc. of MIFI Scientific Session (Moscow, MIFI, 2009), Vol. 4, pp. 171–174.[in Russian].

    Google Scholar 

  38. 38.

    A. A. Ionin, Yu. M. Klimachev, A. Yu. Kozlov, and A. A. Kotkov, “Mid-IR Zeeman spectrum of nitric oxide molecules in a strong magnetic field,” J. Phys., 44, 025403 (2011).

    ADS  MathSciNet  Google Scholar 

  39. 39.

    Yu. G. Borkov, A. A. Ionin, I. O. Kinyaevskii, Yu. M. Klimachev, A. Yu. Kozlov, A. A. Kotkov, and O. N. Sulakshina, “Study of the Aeeman effct in the IR-spectrum of NO molecule,” in Proc. of the XX Intern. Symp. “Atmospheric and Oceanic Optics. Atmospheric Physics” (Publishing House of IAO SB RAS, Tomsk, 2014) [in Russian].

    Google Scholar 

  40. 40.

    Yu. G. Borkov, A. A. Ionin, Yu. M. Klimachev, I. O. Kinyaevskiy, A. A. Kotkov, A. Yu. Kozlov, and O. N. Sulakshina. http://ocsciemates/EPS2014PAP/ pdf/P1.121pdf.

  41. 41.

    Yu. G. Borkov, A. A. Ionin, Yu. M. Klimachev, I. O. Kinyaevskiy, A. A. Kotkov, A. Yu. Kozlov, and O. N. Sulakshina, “Zeeman effect treatment in the infrared spectrum of the nitric oxide molecule,” Proc. SPIE—Int. Soc. Opt. Eng. 9292 (5), 929207 (2014).

    Google Scholar 

  42. 42.

    S. Vetoshkin, A. Ionin, Yu. Klimachev, A. Kotkov, A. Kozlov, O. Rulev, L. Seleznev, and D. Sinitsyn, “Multiline laser probing for active media CO:He, CO:N2, and CO:O2 in wide-aperture pulsed amplifier,” J. Russian Laser Res. 27 (1), 33–69 (2006).

    Article  Google Scholar 

  43. 43.

    H. E. Radford, “Microwave Zeeman effect of free hydroxyl radicals,” Phys. Rev. 122 (1), 114–130 (1961).

    ADS  Article  Google Scholar 

  44. 44.

    A. Schadee, “On the Zeeman effect in electronic transitions of diatomic molecules,” J. Quant. Spectrosc. Radiat. Transfer 19 (5), 517–531 (1978).

    ADS  Article  Google Scholar 

  45. 45.

    A. A. Ramos and J. T. Bueno, “Theory and modeling of the Zeeman and Paschen–Back effects in molecular lines,” Astrophys. J. 636 (1), 548–563 (2006).

    ADS  Article  Google Scholar 

  46. 46.

    O. N. Sulakshina, “Theoretical treatment of the vibrational-rotational spectra of stable diatomic radicals in the 2? state,” Atmos. Ocean. Opt. 17 (11), 774–782 (2004).

    Google Scholar 

  47. 47.

    C. Amiot, J. P. Maillard, and J. Chauville, “Fourier spectroscopy of the OD infrared spectrum. Merge of electronic, vibration-rotation, and microwave spectroscopic data,” J. Mol. Spectrosc. 87 (1), 196–218 (1981).

    ADS  Article  Google Scholar 

  48. 48.

    H. Schall, J. A. Gray, M. Dulick, and R. W. Field, “Sub-Doppler Zeeman spectroscopy of the CeO molecule,” J. Chem. Phys. 85 (2), 751–762 (1986).

    ADS  Article  Google Scholar 

  49. 49.

    W. Herrmann, W. Rohrbeck, and W. Urban, “Line shape analysis for Zeeman modulation spectroscopy,” Appl. Phys. 22 (1), 71–75 (1980).

    ADS  Article  Google Scholar 

  50. 50.

    L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, C. D. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, V. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130 (1), 4–50 (2012).

    ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yu. G. Borkov.

Additional information

Original Russian Text © Yu.G. Borkov, Yu.M. Klimachev, O.N. Sulakshina, 2015, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Borkov, Y.G., Klimachev, Y.M. & Sulakshina, O.N. Dependence of Zeeman splitting of spectral lines on the magnetic field magnitude for NO molecule. Atmos Ocean Opt 29, 103–118 (2016). https://doi.org/10.1134/S1024856016020044

Download citation

Keywords

  • Zeeman splitting
  • vibrational-rotational spectroscopy
  • nitric oxide
  • laser magnetic resonance
  • CO laser