Atmospheric and Oceanic Optics

, Volume 29, Issue 1, pp 56–66 | Cite as

Estimation of spatial inhomogeneities of thermal stratification in the boundary layer of the Moscow megalopolis from remote sensing

  • V. P. YushkovEmail author
Remote Sensing of Atmosphere, Hydrosphere, and Underlying Surface


The results of a joint study of spatial inhomogeneity and accuracy of retrieving temperature profiles in the atmospheric boundary layer over Moscow are analyzed. Measurements at three sites allowed estimating the spatial variability of thermal stratification in the megalopolis. The effect of local features of the observation sites on the retrieval error at all altitudes is shown. To reduce this effect, the retrieval of temperature lapse rate is suggested. Comparison of temperature gradients showed a gradual decrease in the effect of the local features in the range from 100 to 300 m. Based on the statistical variability analysis of the vertical temperature gradients, a reference mesh of temperature profilers is suggested.


temperature boundary layer remote sensing megalopolis variability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Emeis, “Surface-based remote sensing of the atmospheric boundary layer,” in Springer Science & Business Media. Atmospheric and Oceanographic Sciences Library (Springer, 2010), Vol. 40.Google Scholar
  2. 2.
    J. M. Wilczak, E. E. Gossard, W. D. Neff, and W. L. Eberhard, “Ground-based remote sensing of the atmospheric boundary layer: 25 years of progress,” in Bound.-Lay. Meteorol. 25th Anniversary Vol., 1970–1995 (Springer, 1996), pp. 321–349.CrossRefGoogle Scholar
  3. 3.
    W. F. Dabberdt, G. L. Frederick, R. M. Hardesty, W. C. Lee, and K. Underwood, “Advances in meteorological instrumentation for air quality and emergency,” Meteorol. Atmos. Phys. 87 (1–3), 57–88 (2004).ADSGoogle Scholar
  4. 4. Scholar
  5. 5.
    E. N. Kadygrov, I. N. Kuznetsova, and G. S. Golitsyn, “Heat island in the boundary atmospheric layer over a large city: New results based on remote sensing data,” Dokl. Earth Sci. 385 (6), 688–694 (2002).Google Scholar
  6. 6.
    I. N. Kuznetsova and E. N. Kadygrov, “Investigation of temporal-spatial parameters of an urban heat island on the basis of passive microwave remote sensing,” Theor. Appl. Climatol. 84 (1–3), 161–169 (2006).ADSGoogle Scholar
  7. 7.
    E. A. Miller, E. A. Vorob’eva, and E. H. Kadygrov, “Study of seasonal and interannual features of temperature stratification of urban heat islands,” Opt. Atmos. Okeana 22 (6), 558–561 (2009).Google Scholar
  8. 8.
    G. I. Gorchakov, E. N. Kadygrov, V. E. Kunitsyn, V. I. Zakharov, E. G. Semutnikova, A. V. Karpov, G. A. Kurbatov, and S. I. Sitanskii, “The Moscow heat island in the blocking anticyclone during summer 2010,” Dokl. Earth Sci. 456 (2) 736–740 (2014).ADSCrossRefGoogle Scholar
  9. 9.
    B. Schönwald, “Determination of vertical temperature profiles for the atmospheric boundary layer by ground-based microwave radiometry,” Bound.-Lay. Meteorol. 15 (4), 453–464 (1978).ADSCrossRefGoogle Scholar
  10. 10.
    K. P. Gaikovich, E. H. Kadygrov, A. S. Kosov, and A. V. Troitskii, “Thermal sounding of the atmospheric boundary layer in the center of an oxygen absorption line,” Radiophys. Quantum Electron. 35 (2), 93–92 (1992).ADSCrossRefGoogle Scholar
  11. 11.
    A. V. Troitskii, Doctoral Dissertation in Engineering (Nizhny Novgorod, 1994).Google Scholar
  12. 12.
    A. P. Naumov, N. N. Osharina, and A. V. Troitsky, “Ground-based microwave thermal sounding of the atmosphere,” Radiophys. Quantum Electron. 42 (1), 39–51 (1999).ADSCrossRefGoogle Scholar
  13. 13.
    E. R. Westwater, S. Crewell, and C. Matzler, “Surfacebased microwave and millimeter wave radiometric remote sensing of the troposphere: A tutorial,” IEEE Geosci. Remote Sens. Soc. Newslett. 134, 16–33 (2005).Google Scholar
  14. 14.
    E. N. Kadygrov and D. R. Pick, “The potential for temperature retrieval from an angular-scanning singlechannel microwave radiometer and some comparisons with in situ observations,” Meteorol. Appl. 5, 393–404 (1998).ADSCrossRefGoogle Scholar
  15. 15.
    A. S. Vyazankin, E. H. Kadygrov, H. F. Mazurin, A. V. Troitskii, and G. H. Shur, “The Russian hydrometeorological center’s soil—vegetation—atmospheric surface layer model: Algorithm and validation results,” Meteorol. Gidrol, No. 3, 34–44 (2001).Google Scholar
  16. 16.
    S. Crewell and U. Lohnert, “Accuracy of boundary layer temperature profiles retrieved with multifrequency multiangle microwave radiometry,” IEEE Trans. Geosci. Remote Sens. 45 (7), 2195–2201 (2007).ADSCrossRefGoogle Scholar
  17. 17.
    V. Yushkov, “What can be measured by the temperature profiler?,” Rus. Meteorol. Hydrol. 39 (12), 838–846 (2014).CrossRefGoogle Scholar
  18. 18.
    E. Kadygrov, M. Khaikin, E. Miller, A. Shaposhnikov, and A. Troitsky, “Advanced atmospheric boundary-layer temperature profiling with mtp-5he microwave system,” in Proc. WMO Technical Conference on Instruments and Methods of Observation, 4–7 May, 2005, Bucharest, Romania (TECO-2005). Scholar
  19. 19.
    I. N. Kuznetsova, E. N. Kadygrov, E. A. Miller, and M. I. Nakhaev, “Characteristics of lowest 600 m atmospheric layer temperature on the basis of MTP-5 profiler data,” Opt. Atmos. Okeana 24 (10), 877–883 (2012).Google Scholar
  20. 20.
    V. P. Yushkov, M. A. Kallistratova, R. D. Kuznetsov, G. A. Kurbatov, and V. F. Kramar, “Experience in measuring the wind-velocity profile in an urban environment with a Doppler sodar,” Izv. Atmos. Ocean. Phys. 43 (2), 168–180 (2007).CrossRefGoogle Scholar
  21. 21.
    M. A. Kallistratova, I. V. Petenko, and E. A. Shurygin, “Sodar research of the wind velocity field in the lower troposphere,” Izv. Akad. Nauk. Ser. Fiz. Atmos. Okeana 23 (5), 451–461 (1987).Google Scholar
  22. 22.
    A. S. Monin and A. M. Obukhov, “Basic laws of turbulent mixing in the surface layer of the atmosphere,” Contrib. Geophys. Inst. Acad. Sci. USSR 151, 163–187 (1954).Google Scholar
  23. 23.
    J. Bendat and A. Piersol, Random Data: Analysis and Measurement Procedure (Wiley-Interscience, 1971).zbMATHGoogle Scholar
  24. 24.
    I. Akasaka, H. Ando, H. Yokoyama, S. Okubo, K. Takahashi, T. Izumi, and T. Mikami, “High-spatial density meteorological observation system in Tokyo,” J. Geogr. (Chigaku Zasshi) 120, 309–316 (2011).CrossRefGoogle Scholar
  25. 25.
    A. V. Troitsky, K. P. Gajkovich, V. D. Gromov, E. N. Kadygrov, and A. S. Kosov, “Thermal sounding of the atmospheric boundary layer in the oxygen absorption band center at 60 GHz,” IEEE Trans. Geosci. Remote Sens. 31 (1), 116–120 (1993).ADSCrossRefGoogle Scholar
  26. 26.
    I. N. Kuznetsova and M. I. Nakhaev, “Seasonal features in the thermal structure of lower atmospheric layers in the Moscow megalopolis from temperature microwave measurement data,” in 80th Anniversary of the Hydrometeorological Center of Russian (TRIADA Ltd., Moscow, 2010) [in Russian].Google Scholar
  27. 27.
    R. G. Frehlich, M. L. Jensen, Y. Meillier, and A. Muschinski, “Extreme gradients in the nocturnal boundary layer: Structure, evolution, and potential causes,” J. Atmos. Sci. 60 (20), 2496–2508 (2003).ADSCrossRefGoogle Scholar
  28. 28.
    R. M. Banta, L. Mahrt, D. Vickers, J. Sun, B. B. Balsley, Y. L. Pichugina, and E. J. Williams, “The very stable boundary layer on nights with weak low-level jets,” J. Atmos. Sci. 64 (9), 3068–3090 (2007).ADSCrossRefGoogle Scholar
  29. 29.
    V. V. Folomeev, E. N. Kadygrov, E. A. Miller, V. V. Nekrasov, A. N. Shaposhnikov, and A. V. Troisky, “Advanced microwave system for measurement of ABL thermal stratification in polar region,” in Proc. WMO Techn. Conf. on Meteorological Instruments and Methods of Observations, Helsinki, Finland. 2010. Federeation.pdf.Google Scholar
  30. 30.
    E. N. Kadygrov, Doctoral Dissertation in Engineering (Moscow, 2010).Google Scholar
  31. 31.
    T. R. Oke, “The urban energy balance,” Progr. Phys. Geogr. 12 (4), 471–508 (1988).CrossRefGoogle Scholar
  32. 32.
    A. J. Arnfield, “Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island,” Int. J. Climatol. 23 (1), 1–26 (2003).CrossRefGoogle Scholar
  33. 33.
    P. A. Mirzaei and F. Haghighat, “Approaches to study urban heat island-abilities and limitations,” Build. Environ. 45 (10), 2192–2201 (2010).CrossRefGoogle Scholar
  34. 34.
    Y. Fukui, “A study on surface temperature patterns in the Tokyo metropolitan area using ASTER data,” Geosci. J. 7(4), 343–346 (2003).ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    M. W. Rotach, R. Vogt, C. Bernhofer, E. Batchvarova, A. Christen, A. Clappier, B. Feddersen, S.-E. Gryning, G. Martucci, H. Mayer, V. Mitev, T. R. Oke, E. Parlow, H. Richner, M. Roth, Y.-A. Roulet, D. Ruffieux, J. A. Salmond, M. Schatzmann, and J. A. Voogt, “BUBBLE—An urban boundary layer meteorology project,” Theor. Appl. Climatol. 81 (3–4), 231–261 (2005).ADSCrossRefGoogle Scholar
  36. 36.
    H. Yamato, H. Takahashi, and T. Mikami, “New urban heat island monitoring system in Tokyo metropolis,” in Proc. 7th Int. Conf. on Urban Climate. Yokohama, Japan, June, 2009. Scholar
  37. 37.
    A. F. Kurbatskii and L. I. Kurbatskaya, “Three-parameter model of turbulence for the atmospheric boundary layer over an urbanized surface,” Izv., Atmos. Ocean. Phys. 46 (4), 439–455 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations