Skip to main content

Reconstruction of the aerosol microstructure from measurements of light extinction in the atmosphere under restriction of the spectral range

Abstract

A study was conducted on how the upper boundary λmax of the spectral range in which the transmission of the atmosphere is measured has an effect on results of reconstruction of aerosol microstructure parameters in the process of solving the inverse problem of solar photometry by data from numerical simulation and field experiments. The numerical experiment involves the model of aerosol formed by the submicron (fine) (f) and coarse (c) fractions of particles. The quantity λmax was chosen in the range from 1.052 to 3.973 μm. To solve the inverse problem, the integral distribution method was used. It is shown that a restriction of the spectrum interval implies an underestimation of the contribution of large particles in the aerosol distribution. In particular, at λmax = 1.246 μm, on the background of a decrease in the volume concentration of aerosol (up to 18% at λmax = 1.246 μm), losses in the reconstruction of the concentration of particles from the c-fraction can reach 42%.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    WMO/GAW Aerosol Measurement Procedures: Guidelines and Recommendations. GAW Report No. 153 (WMO, 2003).

  2. 2.

    V. V. Veretennikov, “Interpretation of the model of spectral extinction for coastal marine haze,” Atmos. Ocean. Opt. 3 (10), 939–946 (1990).

    Google Scholar 

  3. 3.

    V. V. Veretennikov, “On the effect of wind on the optical-microphysical characteristics of coastal marine haze,” Atmos. Ocean. Opt. 4 (4), 267–271 (1991).

    Google Scholar 

  4. 4.

    R. F. Rakhimov, S. M. Sakerin, E. V. Makienko, and D. M. Kabanov, “Interpretation of the anomalous spectral dependence of the aerosol optical depth of the atmosphere. Part 2. Peculiarities of the aerosol dispersion structure,” Atmos. Ocean. Opt. 13 (9), 759–765 (2000).

    Google Scholar 

  5. 5.

    E. V. Makienko, R. F. Rakhimov, Yu. A. Pkhalagov, and V. N. Uzhegov, “Microphysical interpretation of the anomalous spectral behavior of aerosol extinction along a ground path,” Atmos. Ocean. Opt. 16 (12), 1008–1012 (2003).

    Google Scholar 

  6. 6.

    A. Angström, “Parameters of atmospheric turbidity,” Tellus. XVI (1), 64–75 (1964).

    ADS  Article  Google Scholar 

  7. 7.

    N. T. O’Neill, O. Dubovik, and T. F. Eck, “A modified Angström coefficient for the characterization of submicron aerosols,” Appl. Opt. 40 (15), 2368–2374 (2001).

    ADS  Article  Google Scholar 

  8. 8.

    N. T. O’Neill, T. F. Eck, A. Smirnov, B. N. Holben, and S. Thulasiraman, “Spectral discrimination of coarse and fine mode optical depth,” J. Geophys. Res., D 108 (17), 4559–4573 (2003).

    ADS  Article  Google Scholar 

  9. 9.

    S. M. Sakerin and D. M. Kabanov, “Correlations between the parameters of Angström formula and aerosol optical thickness of the atmosphere in the wavelength range from 1 to 4 µm,” Atmos. Ocean. Opt. 20 (3), 200–206 (2007).

    Google Scholar 

  10. 10.

    Yu. A. Pkhalagov, V. N. Uzhegov, and N. N. Shchelkanov, “On the contributions of disperse fractions of the near-ground haze to the extinction of visible and IR radiation,” Atmos. Ocean. Opt. 12 (1), 15–19 (1999).

    Google Scholar 

  11. 11.

    B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakadjima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—A federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66 (1), 1–16 (1998).

    Article  Google Scholar 

  12. 12.

    http://www.cimel.fr/

  13. 13.

    http://www.pmodwrc.ch/

  14. 14.

    http://prede.com/

  15. 15.

    http://atmos.cr.chiba-u.ac.jp/index_atmos.html

  16. 16.

    D. M. Kabanov, S. M. Sakerin, and S. A. Turchinovich, “Sun photometer for scientific monitoring (instrumentation, techniques, algorithms),” Atmos. Ocean. Opt. 14 (12), 1067–1074 (2001).

    Google Scholar 

  17. 17.

    S. M. Sakerin, D. M. Kabanov, A. P. Rostov, S. A. Turchinovich, and Yu. S. Turchinovich, “System for network monitoring of the atmospheric constituents active in radiative processes. Part 1. Sun photometers,” Atmos. Ocean. Opt. 17 (4), 314–320 (2004).

    Google Scholar 

  18. 18.

    S. M. Sakerin, D. M. Kabanov, A. P. Rostov, S. A. Turchinovich, and V. V. Knyazev, “Sun photometers for measuring spectral air transparency in stationary and mobile conditions,” Atmos. Ocean. Opt. 26 (4), 352–356 (2012).

    Article  Google Scholar 

  19. 19.

    V. N. Uzhegov, A. P. Rostov, and Yu. A. Pkhalagov, “Automated path photometer,” Opt. Atmos. Okeana 26 (7), 590–594 (2013).

    Google Scholar 

  20. 20.

    V. V. Veretennikov and S. S. Men’shchikova, “Microphysical extrapolation in the problem of inversion of spectral measurements of aerosol optical depth,” Atmos. Ocean. Opt. 25 (2), 135–141 (2012).

    Article  Google Scholar 

  21. 21.

    V. V. Veretennikov and S. S. Men’shchikova, “Features of retrieval of microstructural parameters of aerosol from measurements of aerosol optical depth. Part I. Technique for solving the inverse problem,” Atmos. Ocean. Opt. 26 (6), 473–479 (2013).

    Article  Google Scholar 

  22. 22.

    H. C. van de Hulst, Light Scattering by Small Particles (John Wiley and Sons, N.Y.; Chapman and Hall, London, 1957).

    Google Scholar 

  23. 23.

    V. V. Veretennikov, “Inverse problems in sun photometry for integral aerosol distributions. I. Theory and numerical experiment for submicron range of particle sizes,” Atmos. Ocean. Opt. 19 (4), 259–265 (2006).

    Google Scholar 

  24. 24.

    V. V. Veretennikov, “Inverse problems in sun photometry for integral aerosol distributions. II. Division into submicron and coarse fractions,” Atmos. Ocean. Opt. 19 (4), 266–272 (2006).

    Google Scholar 

  25. 25.

    D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (N.Y.: Elsevier, 1969).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. V. Veretennikov.

Additional information

Original Russian Text © V.V. Veretennikov, S.S. Men’shchikova, 2015, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Veretennikov, V.V., Men’shchikova, S.S. Reconstruction of the aerosol microstructure from measurements of light extinction in the atmosphere under restriction of the spectral range. Atmos Ocean Opt 29, 18–26 (2016). https://doi.org/10.1134/S1024856016010127

Download citation

Keywords

  • aerosol optical depth
  • aerosol microstructure
  • inverse problems