Advertisement

Atmospheric and Oceanic Optics

, Volume 29, Issue 1, pp 42–55 | Cite as

Stellar scintillations in spacecraft occultation experiment for atmospheric irregularities with variable anisotropy

Remote Sensing of Atmosphere, Hydrosphere, and Underlying Surface

Abstract

The properties of stellar scintillations are studied in an occultation experiment during synchronous sounding of the atmosphere at different wavelengths. The scintillation auto and coherence spectra are calculated for the model of three-dimensional (3D) spectrum of atmospheric irregularities with variable anisotropy. In the calculations, we used the dependence of the anisotropy coefficient on the irregularity scale derived from chromatic stellar scintillation measurements with fast GOMOS (Global Ozone Monitoring by Occultation of Stars) photometers in tangential occultations. Calculations are carried out in approximations of the equivalent phase screen and weak scintillations. The regime of weak scintillations for low-orbit satellites corresponds to altitudes of ray perigee above 25–30 km. The scintillation spectra are compared for models of 3D spectrum of atmospheric irregularities with variable and constant anisotropy, and their common parameters and features are found.

Keywords

spacecraft sounding of atmosphere variable anisotropy of density irregularities stellar scintillations spectra of week scintillations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. B. Hubbard, E. Lellouch, B. Sicardy, A. Brahic, F. Vilas, P. Bouchet, R. A. McLaren, and C. Perrier, “Structure of scintillations in Neptune’s occultation shadow,” Astrophys. J. 325 (1), 490–502 (1988).ADSCrossRefGoogle Scholar
  2. 2.
    E. Raynaud, K. Matheva, P. Drossart, F. Roques, and B. Sicardy, “A reanalysis of the 1971 Beta Scorpii occultation by Jupiter: Study of the temperature fluctuations and detection of wave activity,” Icarus 168 (2), 324–335 (2004).ADSCrossRefGoogle Scholar
  3. 3.
    A. P. Aleksandrov, G. M. Grechko, A. S. Gurvich, V. Kan, M. Kh. Manarov, A. I. Pakhomov, Yu. V. Romanenko, S. A. Savchenko, S. I. Serova, and V. G. Titov, “Spectra of temperature variations in the stratosphere from spacecraft observations of stellar scintillations,” Izv. Akad. Nauk, Ser. Fiz. Atmos. Okeana 26 (1), 5–16 (1990).ADSGoogle Scholar
  4. 4.
    A. S. Gurvich, V. Kan, S. A. Savchenko, A. I. Pakhomov, P. A. Borovikhin, O. N. Volkov, A. Yu. Kalerii, S. V. Avdeev, V. G. Korzun, G. I. Padalka, and Ya. P. Podvyaznyi, “Study of turbulence and internal waves in the stratosphere on the basis of spacecraft observations of stellar scintillations. 1. Observations and dispersion of scintillations,” Izv. Akad. Nauk. Ser. Fiz. Atmos. Okeana 37 (4), 469–486 (2001).Google Scholar
  5. 5.
    A. S. Gurvich, V. Kan, S. A. Savchenko, A. I. Pakhomov, and G. I. Padalka, “Study of turbulence and internal waves in the stratosphere on the basis of spacecraft observations of stellar scintillations. 2. Probability distribution and scintillation spectra,” Izv. Akad. Nauk. Ser. Fiz. Atmos. Okeana 37 (4), 487–501 (2001).Google Scholar
  6. 6.
    A. S. Gurvich and V. Kan, “Structure of air density irregularities in the stratosphere from spacecraft observations of stellar scintillation: 1. Three-dimensional spectrum model and recovery of its parameters,” Izv., Atmos. Ocean. Phys. 39 (3), 300–310 (2003).Google Scholar
  7. 7.
    A. S. Gurvich and V. Kan, “Structure of air density irregularities in the stratosphere from spacecraft observations of stellar scintillation: 2. Characteristic scales, structure characteristics, and kinetic energy dissipation,” Izv., Atmos. Ocean. Phys. 39 (3), 311–321 (2003).Google Scholar
  8. 8.
    V. F. Sofieva, A. S. Gurvich, F. Dalaudier, and V. Kan, “Reconstruction of internal gravity waves and turbulence parameters in the stratosphere using GOMOS scintillation measurements,” J. Geophys. Res. 112, D12113 (2007).ADSCrossRefGoogle Scholar
  9. 9.
    V. F. Sofieva, V. Kan, F. Dalaudier, E. Kyrola, J. Tamminen, J.-L. Bertaux, A. Hauchecorne, D. Fussen, and F. Vanhellemont, “Influence of scintillation on quality of ozone monitoring by GOMOS,” Atmos. Chem. Phys. 9, 9197–9207 (2009).ADSCrossRefGoogle Scholar
  10. 10.
    J. L. Bertaux, E. Kyrola, D. Fussen, A. Hauchecorne, F. Dalaudier, V. Sofieva, J. Tamminen, F. Vanhellemont, O. Fanton d’Andon, G. Barrot, A. Mangin, L. Blanot, J. C. Lebrun, K. Perot, T. Fehr, L. Saavedra, G. W. Leppelmeier, and R. Fraisse, “Global ozone monitoring by occultation of stars: An overview of GOMOS measurements on ENVISAT,” Atmos. Chem. Phys. 10, 12091–12148 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    W. B. Hubbard, J. R. Jokipii, and B. A. Wilking, “Stellar occultation by turbulent planetary atmospheres: A wave-optical theory including a finite scale height,” Icarus 34 (2), 374–395 (1978).ADSCrossRefGoogle Scholar
  12. 12.
    A. S. Gurvich, “Fluctuations in the observations of extraterrestrial cosmic sources through the earth’s atmosphere,” Radiophys. Quantum Electron. 27 (8), 665–672 (1984).ADSCrossRefGoogle Scholar
  13. 13.
    V. I. Tatarskii, Wave Propagation in a Turbulent Atmosphere (Nauka, Moscow, 1967) [in Russiaan].Google Scholar
  14. 14.
    G. M. Grechko, A. S. Gurvich, V. Kan, A. I. Pakhomov, Ya. P. Podvyaznyi, and S. A. Savchenko, “Observations of atmospheric turbulence at altitudes of 20–70 km,” Dokl. Earth Sci. 357A (9), 1382–1385 (1997).Google Scholar
  15. 15.
    A. S. Gurvich and V. L. Brekhovskikh, “Study of the turbulence and inner waves in the stratosphere based on the observations of stellar scintillations from space: A model of scintillation spectra,” Waves Random Media 11 (3), 163–181 (2001).ADSzbMATHGoogle Scholar
  16. 16.
    V. F. Sofieva, E. Kyrola, S. Hassinen, L. Backman, J. Tamminen, A. Seppala, L. Tholix, A. S. Gurvich, V. Kan, F. Dalaudier, A. Hauchecorne, J.-L. Bertaux, D. Fussen, F. Vanhellemont, O. Fanton d’Andon, G. Barrot, A. Mangin, M. Guirlet, T. Fehr, P. Snoeij, L. Saavedra, R. Koopman, and R. Fraisse, “Global analysis of scintillation variance: Indication of gravity wave breaking in polar winter upper stratosphere,” Geophys. Rev. Lett. 34, L03812 (2007).ADSCrossRefGoogle Scholar
  17. 17.
    V. F. Sofieva, F. Dalaudier, and J. Vernin, “Using stellar scintillation for studies of turbulence in the Earth’s atmosphere,” Phil. Trans. Roy. Soc. A Math. Phys. Eng. Sci. 371, 20120174 (2013). doi 10.1098/rsta.2012.0174CrossRefGoogle Scholar
  18. 18.
    G. M. Grechko, A. S. Gurvich, V. Kan, S. V. Sokolovskyi, and S. A. Savchenko, “Scintillations and random refraction during occultations by terrestrial atmosphere,” J. Opt. Soc. Amer., A 2 (12), 2120–2123 (1985).ADSCrossRefGoogle Scholar
  19. 19.
    S. V. Kireev and S. V. Sokolovskiy, “Variations of refraction angles from observations of the Moon from space,” Appl. Opt. 33 (36), 8402–8405 (1994).ADSCrossRefGoogle Scholar
  20. 20.
    A. S. Gurvich, S. V. Zagoruiko, V. Kan, L. I. Popov, V. V. Ryumin, S. A. Savchenko, and P. A. Chochia, “Structure of temperature inhomogeneities from atmospheric refraction observations at SALUT-6 orbital station,” Dokl. Akad. Nauk 259 (6), 1330–1333 (1981).Google Scholar
  21. 21.
    A. S. Gurvich and A. I. Kon, “Aspect sensitivity of radar returns from anisotropic turbulent irregularities,” J. Electromagnet. Wave 7 (10), 1343–1353 (1993).CrossRefGoogle Scholar
  22. 22.
    G. W. Adams, J. W. Brosnahan, and R. E. Jonson, “Aspect sensitivity of 2.66-MHz radar return from the mesosphere,” Radio Sci. 24 (2), 127–132 (1989).ADSCrossRefGoogle Scholar
  23. 23.
    M. Ern, P. Preusse, M. J. Alexander, and C. D. Warner, “Absolute values of gravity wave momentum flux derived from satellite data,” J. Geophys. Res. 109, D20103 (2004).ADSCrossRefGoogle Scholar
  24. 24.
    M. Ern and P. Preusse, “Gravity wave momentum flux spectra observed from satellite in the summertime subtropics: Implications for global modeling,” Geophys. Rev. Lett. 39, L15810 (2012).ADSCrossRefGoogle Scholar
  25. 25.
    M. J. Alexander, J. Gille, C. Cavanaugh, M. Coffey, C. Craig, T. Eden, G. Francis, C. Halvorson, J. Hannigan, R. Khosravi, D. Kinnison, H. Lee, S. Massie, B. Nardi, J. Barnett, C. Hepplewhite, A. Lambert, and V. Dean, “Global estimates of gravity wave momentum flux from High Resolution Dynamics Limb Sounder (HIRDLS) observations,” J. Geophys. Res. 113, 18 (2008).CrossRefGoogle Scholar
  26. 26.
    L. Wang, M. A. Geller, and M. J. Alexander, “Spatial and temporal variations of gravity wave parameters. Part I: Intrinsic frequency, wavelength, and vertical propagation direction,” J. Atmos. Sci. 62 (1), 125–142 (2005).ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    L. Wang and M. J. Alexander, “Global estimates of gravity wave parameters from GPS radio occultation temperature data,” J. Geophys. Res. 115, D21122 (2010).ADSCrossRefGoogle Scholar
  28. 28.
    J. Rottger, P. Czechowsky, and G. Schmidt, “First lowpower VHF radar observations of tropospheric, stratospheric and mesospheric winds and turbulence at the Arecibo observatory,” J. Atmos. Terr. Phys. 43 (8), 789–900 (1981).ADSCrossRefGoogle Scholar
  29. 29.
    F. Dalaudier, M. Crochet, and C. Sidi, “Direct comparison between in situ measurements of temperature spectra: A puzzling result,” Radio Sci. 24 (5), 311–324 (1989).ADSCrossRefGoogle Scholar
  30. 30.
    V. F. Sofieva, F. Dalaudier, V. Kan, and A. S. Gurvich, “Technical note: Scintillation of the double star a-cru observed by GOMOS/Envisat,” Atmos. Chem. Phys. 9, 8967–8973 (2009). doi 10.5194/acp-9-8967-2009ADSCrossRefGoogle Scholar
  31. 31.
    V. Kan, V. F. Sofieva, and F. Dalaudier, “Anisotropy of small-scale stratospheric irregularities retrieved from scintillations of a double star a-Cru observed by GOMOS/ENVISAT,” Atmos. Meas. Tech. 5, 2713–2722 (2012).CrossRefGoogle Scholar
  32. 32.
    V. Kan, V. F. Sofieva, and F. Dalaudier, “Variable anisotropy of small-scale stratospheric irregularities retrieved from stellar scintillation measurements by GOMOS/Envisat,” Atmos. Meas. Tech. 7, 1861–1872 (2014).CrossRefGoogle Scholar
  33. 33.
    A. S. Gurvich and I. P. Chunchuzov, “Estimates of characteristic scales in the spectrum of internal waves in the stratosphere obtained from space observations of stellar scintillations,” J. Geophys. Res. 110, D03114. doi 10.1029/2004JD005199 (2005).ADSGoogle Scholar
  34. 34.
    A. S. Gurvich, “A heuristic model of three-dimensional spectra of temperature inhomogeneities in the stably stratified atmosphere,” Ann. Geophys. 15 (7), 856–869 (1997).ADSCrossRefGoogle Scholar
  35. 35.
    A. S. Gurvich and I. P. Chunchuzov, “Three-dimensional spectrum of temperature fluctuations in stably stratified atmosphere,” Ann. Geophys. 26 (7), 2037–2042 (2008).ADSCrossRefGoogle Scholar
  36. 36.
    A. S. Gurvich and I. P. Chunchuzov, “Model of the three-dimensional spectrum of anisotropic temperature irregularities in a stably stratified atmosphere,” Izv., Atmos. Ocean. Phys. 44 (5), 567–582 (2008).CrossRefGoogle Scholar
  37. 37.
    A. S. Monin and A. M. Yaglom, Statistical Hydromechanics (Nauka, Moscow, 1967) [in Russian].Google Scholar
  38. 38.
    S. A. Smith, D. C. Fritts, and T.E. van Zandt, “Evidence of saturation spectrum of atmospheric gravity waves,” J. Atmos. Sci. 44 (10), 1404–1410 (1987).ADSCrossRefGoogle Scholar
  39. 39.
    D. C. Fritts and M. J. Alexander, “Gravity wave dynamics and effects in the middle atmosphere,” Rev. Geophys. 41 (1) (2003).Google Scholar
  40. 40.
    V. F. Sofieva, J. Vira, E. Kyrola, J. Tamminen, V. Kan, F. Dalaudier, A. Hauchecorne, J.-L. Bertaux, D. Fussen, F. Vanhellemont, G. Barrot, and O. Fanton d’Andon, “Retrievals from GOMOS stellar occultation measurements using characterization of modeling errors,” Atmos. Meas. Techn. 3, 1019–1027 (2010). doi 10.5194/amt-3-1019-2010CrossRefGoogle Scholar
  41. 41.
    I. P. Chunchuzov, “On the high-wavenumber form of the Eulerian internal wave spectrum in the atmosphere,” J. Atmos. Sci. 59, 1753–1772 (2002).ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    A. S. Gurvich, V. V. Vorob’ev, and O. V. Fedorova, “Determination of parameters of the spectrum of internal waves in the stratosphere from space-based observations of strong stellar scintillation,” Izv., Atmos. Ocean. Phys. 42 (4), 463–473 (2006).CrossRefGoogle Scholar
  43. 43.
    A. S. Gurvich, “Chromatic refraction with global ozone monitoring by occultation of stars. I. Description and scintillation correction,” Appl. Opt. 40 (6), 866–877 (2001).ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    V. Kan, F. Dalaudier, and A. S. Gurvich, “Chromatic refraction with global ozone monitoring by occultation of stars. II. Statistical properties of scintillations,” Appl. Opt. 40 (6), 878–889 (2001).ADSCrossRefGoogle Scholar
  45. 45.
    V. Kan, “Coherence and correlation of chromatic stellar scintillations in a spaceborne occultation experiment,” Atmos. Ocean. Opt. 17 (10), 725–734 (2004).Google Scholar
  46. 46.
    A. S. Gurvich and V. Kan, “Radio wave fluctuations in satellite-atmosphere-satellite links: Estimates from stellar scintillation observations and their comparison with experimental data,” Izv., Atmos. Ocean. Phys. 33 (3), 284–292 (1997).Google Scholar
  47. 47.
    O. V. Fedorova, “Scintillation spectra behind inhomogeneities with variable anisotropy,” Atmos. Ocean. Opt. 25 (5), 317–321 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.M. Obukhov Institute of Atmospheric PhysicsMoscowRussia

Personalised recommendations