Skip to main content

Numerical simulation of polarization characteristics of an echo signal in the process of ground-based cloud sensing in the terahertz range

Abstract

Results of numerical statistical simulation of an experiment on ground-based sensing of the cloud layer by linearly polarized terahertz range radiation at several wavelengths from the transmission windows of the atmosphere are presented. The models of the scattering layer involve liquid droplet size distribution functions pooled by results of long-term field experiments in middle latitudes of the Earth, as well as distribution functions obtained in flight measurements near the coast of Great Britain. The models of the scattering medium take into account the vertical stratification of water vapor in the atmosphere and the difference in the microstructure of the cloud layer near its top and bottom.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    E. R. Brown, D. L. Woolard, A. C. Samuels, T. Globus, and B. Gelmont, “Remote detection of bioparticles in the THz region,” in Proc. IEEE Int. Microwave Symp. Vol. 3 (IMS, Seattle, 2002), 1591–1594.

    Google Scholar 

  2. 2.

    T. Globus, D. L. Woolard, A. C. Samuels, B. L. Gelmont, J. Hesler, T. W. Crowe, and M. Bykhovskaia, “Submillimeter-wave Fourier transform spectroscopy of macromolecules,” J. Appl. Phys. 91 (9), 6105–6113 (2002).

    ADS  Article  Google Scholar 

  3. 3.

    D. M. Slocum, T. M. Goyette, E. J. Slingerland, R.H. Giles, and W. E. Nixon, “Terahertz atmospheric attenuation and continuum effects,” Proc. SPIE—Int. Soc. Opt. Eng. 8716, ID 871607 (2013).

    Google Scholar 

  4. 4.

    D. M. Slocum, E. J. Slingerland, R. H. Giles, and T. M. Goyette, “Atmospheric absorption of terahertz radiation and water vapor continuum effects,” J. Quant. Spectrosc. Radiat. Transfer 127, 49–63 (2013).

    ADS  Article  Google Scholar 

  5. 5.

    B. G. Ageev, G. G. Matvienko, Yu. N. Ponomarev, and E. N. Chesnokov, “Prospects of using the terahertz region in atmospheric optics,” in Proc. of the 1st Working Group “Generation and Use of Terahertz Radiation” (Novosibirsk, 2006), pp. 96–103 [in Russian].

    Google Scholar 

  6. 6.

    H. J. Liebe, “MPM—An atmospheric millimeter-wave propagation model,” Int. J. Infrared Millim. Waves 10 (6), 631–650 (1989).

    ADS  Article  Google Scholar 

  7. 7.

    H. M. Pickett, R. L. Poynter, E. A. Cohen, M. L. Delitsky, J. C. Pearson, and H. S. P. Muller, “Submillimeter, millimeter, and microwave spectral line catalog,” J. Quant. Spectrosc. Radiat. Transfer 60, 883–890 (1998).

    ADS  Article  Google Scholar 

  8. 8.

    S. S. Yum and J. G. Hudson, “Maritime/continental microphysical contrasts in stratus,” Tellus Ser. B 54 (1), 61–73 (2002).

    ADS  Article  Google Scholar 

  9. 9.

    P. H. Daum, Y. Liu, R. L. McGraw, Y.-N. Lee, J. Wang, G. Senum, M. Miller, and J. G. Hudson, “Microphysical properties of stratus/stratocumulus clouds during the 2005 Marine Stratus/Stratocumulus Experiment (MASE),” Submitted to J. Geophys. Res., 2007. http://www.ecd.bnl.gov/pubs/BNL-77935-2007-JA.pdf

    Google Scholar 

  10. 10.

    G. M. Aivazyan, Propagation of Millimeterand Submillimeter Waves in Clouds (Gidrometeoizdat, Leningrad, 1991) [in Russian].

    Google Scholar 

  11. 11.

    N. L. Miles, J. Verlinde, and E. E. Clothiaux, “Cloud droplet size distributions in low-level stratiform clouds,” J. Atmos. Sci. 57, 295–311 (2000).

    ADS  Article  Google Scholar 

  12. 12.

    Clouds and Cloudy Atmosphere, Ed. by I.P. Mazin and A.Kh. Khrgian (Gidrometeoizdat, Leningrad, 1989) [in Russian].

    Google Scholar 

  13. 13.

    I. P. Mazin and S. M. Shmeter, Clouds, Structure and Physics of Formation (Gidrometeoizdat, Leningrad, 1983) [in Russian].

    Google Scholar 

  14. 14.

    R. Wood, “Drizzle in stratiform boundary layer clouds. Part I: Vertical and horizontal structure,” J. Atmos. Sci. 62, 3011–3033 (2005).

    ADS  Article  Google Scholar 

  15. 15.

    S. Nicholls, “The dynamics of stratocumulus: Aircraft observations and comparisons with a mixed layer model,” Quart. J. Roy. Meterol. Soc. 110, 783–820 (1984).

    ADS  Article  Google Scholar 

  16. 16.

    Radiation in a Cloudy Atmosphere, Ed. by E.M. Feigel’son (Gidrometeoizdat, Leningrad, 1981) [in Russian].

    Google Scholar 

  17. 17.

    L. G. Kachurin, Physical Basis for Influencing Atmospheric Processes (Gidrometeoizdat, Leningrad, 1990) [in Russian].

    Google Scholar 

  18. 18.

    W. Wiscombe, “Improved Mie scattering algorithms,” Appl. Opt. 19 (9), 1505–1509 (1980).

    ADS  Article  Google Scholar 

  19. 19.

    G. V. Rozenberg, “Stokes parameter vector,” Usp. Fiz. Nauk 56 (1), 77–109 (1955).

    Article  Google Scholar 

  20. 20.

    S. Chandarsekhar, Radiative Transfer (Dover Publications, New York, 1960).

    Google Scholar 

  21. 21.

    G. I. Marchuk, G. A. Mikhailov, M. A. Nazaraliev, R. A. Darbin’yan, B. A. Kargin, and B. S. Elepov, Monte Carlo Method in Atmospheric Optics, Ed. by G.I. Marchuk (Nauka, Novosibirsk, 1976) [in Russian].

  22. 22.

    G. A. Mikhailov, S. A. Ukhinov, and N. V. Tracheva, “Monte Carlo estimate of backscattering noise asymptotics parameters with allowance for polarization,” Atmos. Ocean. Opt. 24 (2), 109–118 (2011).

    Article  Google Scholar 

  23. 23.

    http://www2.sscc.ru/

  24. 24.

    M. A. Marchenko, http://www2.sscc.ru/SORANINTEL/paper/2011/parmonc.htm. Cited August 14, 2015.

  25. 25.

    M. Marchenko, “PARMONC—A software library for massively parallel stochastic simulation,” LNCS 6873, 302–315 (2011).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. G. Kablukova.

Additional information

Original Russian Text © E.G. Kablukova, B.A. Kargin, A.A. Lisenko, G.G. Matvienko, 2015, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kablukova, E.G., Kargin, B.A., Lisenko, A.A. et al. Numerical simulation of polarization characteristics of an echo signal in the process of ground-based cloud sensing in the terahertz range. Atmos Ocean Opt 29, 33–41 (2016). https://doi.org/10.1134/S1024856016010073

Download citation

Keywords

  • cloud droplet size distribution
  • terahertz radiation
  • remote sensing
  • polarization
  • Monte Carlo method
  • local estimate