Skip to main content

Moscow smoke haze in October 2014. Variations in the aerosol mass concentration

Abstract

Variations in the aerosol mass concentration in the smoky atmosphere of the Moscow region in autumn 2014 have been analyzed. The soot mass fraction and ratio between the PM2.5 and PM10 mass concentrations were typical of the fires in boreal forests. The smoke event in the Moscow region was due to the long-range transfer of the smoke aerosol, which was confirmed by a joint analysis of aerospace monitoring data and inverse trajectories of air mass transfer, and local fires in the Moscow region. As a result, statistical parameters of variations in the smoke aerosol mass concentrations were atypical, including empirical distribution functions and power spectra.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    G. I. Gorchakov, P. P. Anikin, A. A. Volokh, A. S. Emilenko, A. A. Isakov, V. M. Kopeikin, T. Ya. Ponomareva, E. G. Semoutnikova, M. A. Sviridenkov, and K. A. Shukurov, “Study of the composition of the atmospheric smoke screen over the Moscow region,” Dokl. Earth Sci. 390 (4), 562–565 (2003).

    Google Scholar 

  2. 2.

    G. I. Gorchakov, P. P. Anikin, A. A. Volokh, A. S. Emilenko, A. A. Isakov, V. M. Kopeikin, T. Ya. Ponomareva, E. G. Semoutnikova, M. A. Sviridenkov, and K. A. Shukurov, “Studies of the smoky atmosphere composition over Moscow during peatbog fires in the summer-fall season of 2002,” Izv. Atmos. Ocean. Phys. 40 (3), 323–336 (2003).

    Google Scholar 

  3. 3.

    G. I. Gorchakov, M. A. Sviridenkov, E. G. Semoutnikova, N. E. Chubarova, B. N. Kholben, A. V. Smirnov, A. S. Emilenko, A. A. Isakov, V. M. Kopeikin, A. V. Karpov, E. A. Lezina, and O. S. Zadorozhnaya, “Optical and microphysical parameters of the aerosol in the smoky atmosphere of the Moscow region in 2010,” Dokl. Earth Sci. 437 (2), 513–517 (2011).

    ADS  Article  Google Scholar 

  4. 4.

    S. A. Sitnov, “Satellite monitoring of atmospheric gaseous species and optical characteristics of atmospheric aerosol over the European part of Russia in April–September 2010,” Dokl. Earth Sci. 437 (1), 368–373 (2011).

    ADS  Article  Google Scholar 

  5. 5.

    G. I. Gorchakov, S. A. Sitnov, M. A. Sviridenkov, E. G. Semoutnikova, A. S. Emilenko, A. A. Isakov, V. M. Kopeikin, A. V. Karpov, I. A. Gorchakova, K. S. Verichev, G. A. Kurbatov, and T. Ya. Ponomareva, “Satellite and ground-based monitoring of smoke in the atmosphere during the summer wildfires in European Russia in 2010 and Siveria in 2012,” Int. J. Remote Sens. 35 (15), 5698–5721 (2014).

    Google Scholar 

  6. 6.

    V. S. Kozlov, E. P. Yausheva, S. A. Terpugova, M. V. Panchenko, D. G. Chernov, and V. P. Shmargunov, “Optical-microphysical properties of smoke haze from Siberia forest fires in summer 2012,” Int. J. Remote Sens. 35 (15), 5722–5741 (2014).

    Google Scholar 

  7. 7.

    S. M. Sakerin, T. V. Bedareva, T. B. Zhuravleva, D. M. Kabanov, I. M. Nasrtdinov, and Yu. S. Turchinovich, “Aerosol radiative characteristics during smoke mist in Siberia,” in Proc. Int. Symp. “Atmospheric Radiation and Dynamics” (ISARD-2013), 24–27 June 2013, Petrodvorets, Saint-Petersburg, Russia (Saint-Petersburg State University, Saint-Petersburg, 2013), p. 67.

    Google Scholar 

  8. 8.

    G. I. Gorchakov, E. G. Semoutnikova, A. A. Isakov, V. M. Kopeikin, A. V. Karpov, G. A. Kurbatov, E. A. Lezina, T. Ya. Ponomareva, and A. V. Sokolov, “Moscow smoky haze of 2010. Extreme aerosol and gaseous air pollution in Moscow region,” Opt. Atmos. Okeana 24 (6), 452–458 (2011).

    Google Scholar 

  9. 9.

    S. A. Sitnov, G. I. Gorchakov, M. A. Sviridenkov, V. M. Kopeikin, T. Ya. Ponomareva, and A. V. Karpov, “Influence of atmospheric circulation on the evolution and radiative forcing of smoke aerosol in European Russia in summer 2010,” Issled. Zemli Kosmosa, No. 2, 28–41 (2013).

    Google Scholar 

  10. 10.

    P. A. Solomon and C. Sioutas, “Continuous semicontinuous monitoring techniques for particulate matter mass and chemical components: A synthesis of findings from EPA’s particulate matter supersites program and related studies,” J. Air Waste Manage. Assos. 58, 164–195 (2008).

    Article  Google Scholar 

  11. 11.

    A. A. Isakov, “Spectropolarimetric and nephelometric studies of surface aerosol induced by the Moscow region forest and turf fires of 2002,” Izv. Atmos. Ocean. Phys. 39 (6), 714–721 (2003).

    MathSciNet  Google Scholar 

  12. 12.

    V. M. Kopeikin, “Soot aerosol in the air of Moscow city,” Izv. Akad. Nauk, Ser. Fiz. Atmos. Okeana 34 (1), 104–110 (1998).

    Google Scholar 

  13. 13.

    V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, “MODIS, Advanced facility instrument for studies of the Earth as a system,” IEEE Trans. Geosci. Remote Sens. 27, 145–153 (1989).

    ADS  Article  Google Scholar 

  14. 14.

    R. C. Levy, L. A. Remer, S. Mattoo, E. F. Vermote, and Y. J. Kaufman, “Second-generation operational algorithm: retrieval of aerosol properties over land from inversion of moderate resolution imaging spectroradiometer spectral reflectance,” J. Geoph. Res. 112, D13211 (2007).

    ADS  Google Scholar 

  15. 15.

    L. Giglio, J. Descloitres, C. O. Justice, and Y. J. Kaufman, “An enhanced contextual fire detection algirithm for MODIS,” Remote Sens. Environ. 87, 273–282 (2003).

    Article  Google Scholar 

  16. 16.

    C. O. Justice, L. Giglio, S. Korontzi, J. Owens, J. T. Morrisette, D. Roy, J. Descloitres, S. Alleaume, F. Petitcolin, and Y. Kaufman, “The MODIS fire products,” Remote Sens. Environ. 83, 244–262 (2002).

    Article  Google Scholar 

  17. 17.

    http://rospotrebnadzor.ru/documents/postanov/28308/print/

  18. 18.

    N. V. Smirnov and N. V. Dunin-Barkovskii, Short Course on Mathematical Statistics for Engineering Applications (Fizmatgiz, Moscow, 1959) [in Russian].

    Google Scholar 

  19. 19.

    G. I. Gorchakov, B. A. Anoshin, and E. G. Semoutnikova, “Statistical analysis of mass concentration variations of the coarse aerosol in Moscow,” Atmos. Ocean. Opt. 20 (6), 461–464 (2007).

    Google Scholar 

  20. 20.

    Yu. A. Dovgalyuk and A. A. Ignat’ev, “Statistics of the water content of cloud fields, dynamics of the atmosphere and climate,” in Abstracts of the International Conference Devoted to the Memory of Academician A.M. Obukhov (GEOS, Moscow, 2013) [in Russian].

    Google Scholar 

  21. 21.

    D. L. Lamli and G. A. Panovskii, Structure of Atmospheric Turbulence (Mir, Moscow, 1966) [in Russian].

    Google Scholar 

  22. 22.

    J. S. Bendat and A. G. Piersol, Engineering Application of Correlation and Spectral Analysis (Wiley-Interscience, New York, 1980).

    MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. I. Gorchakov.

Additional information

Original Russian Text © G.I. Gorchakov, V.M. Kopeikin, S.A. Sitnov, E.G. Semoutnikova, M.A. Sviridenkov, A.V. Karpov, E.A. Lezina, A.S. Emilenko, A.A. Isakov, G.A. Kuznetsov, T.Ya. Ponomareva, 2015, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gorchakov, G.I., Kopeikin, V.M., Sitnov, S.A. et al. Moscow smoke haze in October 2014. Variations in the aerosol mass concentration. Atmos Ocean Opt 29, 5–11 (2016). https://doi.org/10.1134/S102485601601005X

Download citation

Keywords

  • smoke aerosol
  • mass concentration
  • empirical distribution function
  • spectral power
  • two sources of smoke
  • long-range transfer