Atmospheric and Oceanic Optics

, Volume 29, Issue 1, pp 12–17 | Cite as

Multifrequency laser diagnostics of vibrational nonequilibrium gas media containing CO2 molecules

  • K. I. ArshinovEmail author
  • O. N. Krapivnaya
  • V. V. Nevdakh
Spectroscopy of Ambient Medium


The technique for multifrequency diagnostics of a vibrational nonequilibrium gas mixture that contains CO2 molecules is proposed. The technique uses data on unsaturated gains at lines of the 0001–[1000, 0200]I, II and 0002–[1001, 0201]I, II transitions obtained with the help of a tunable CO2 laser. Results of the study of the influence of accuracy of gain measurements and the number of sensing lines on errors in determining populations of vibrational levels and gas mixture translational temperatures are presented.


vibrational nonequilibrium gas media CO2 molecules multifrequency sensing level population translational gas temperature 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. I. Osipov and A. V. Uvarov, “Stability problems in a nonequilibrium gaz,” Phys.-Uspekhi 39 (6), 597–608 (1996).ADSCrossRefGoogle Scholar
  2. 2.
    A. I. Osipov and A. V. Uvarov, “Physics of a nonequilibrium gas,” Priroda (Moscow, Russ. Fed.), No. 10, 61–68 (2001).zbMATHGoogle Scholar
  3. 3.
    W. J. Witteman, The CO2 Laser (Springer, 1987).CrossRefGoogle Scholar
  4. 4.
    J. D. Anderson, Gas-Dynamic Lasers: An Introduction (Academic, New York, 1976).Google Scholar
  5. 5.
    Handbook of Chemical Lasers, Ed. by R. Grossa and J. Botr (John Wiley & Sons, New York, 1976).Google Scholar
  6. 6.
    A. S. Boreisho, “High-power mobile chemical lasers,” Quantum Electron. 35 (5), 393–406 (2005).ADSCrossRefGoogle Scholar
  7. 7.
    V. S. Letokhov, “Lasing in space,” Phys.-Uspekhi 45 (12), 1306–1310 (2002).ADSCrossRefGoogle Scholar
  8. 8.
    V. D. Rusanov and A. A. Fridman, Physics of Chemically Active Plasma (Nauka, Moscow, 1981) [in Russian].Google Scholar
  9. 9.
    O. V. Achasov, N. N. Kudryavtsev, S. S. Novikov, R. I. Soloukhin, and N. A. Fomin, Diagnostics of Nonequilibrium States in Molecular Lasers (Nauka i tekhnika, Minsk, 1985) [in Russian].Google Scholar
  10. 10.
    V. K. Zhivotov, V. D. Rusanov, and A. A. Fridman, Diagnostics of Nonequilibrium Reactive Plasma (Energoatomizdat, Moscow, 1985) [in Russian].Google Scholar
  11. 11.
    K. I. Arshinov, N. S. Leshenyuk, and V. V. Nevdakh, “Calculation of the vibrational temperatures and populations of the laser-active levels of CO2 from the spectral distribution of the gain,” Quantum Electron. 28 (8), 659–662 (1998).ADSCrossRefGoogle Scholar
  12. 12.
    K. I. Arshinov, N. S. Leshenyuk, and V. V. Nevdakh, “Multifrequency diagnostics of a vibrationally equilibrium CO2-containing gas mixture,” J. Appl. Spectrosc. 68 (6), 942–948 (2001).CrossRefGoogle Scholar
  13. 13.
    K. I. Arshinov, M. K. Arshinov, V. V. Nevdakh, M. Y. Perrin, A. Soufiani, and V. V. Yasnov, “Accuracy in determination of the temperature and partial pressure of CO2 in CO2: N2: H2O: NO2 mixtures by multiplefrequency laser probing,” J. Appl. Spectrosc. 74 (6), 903–909 (2007).ADSCrossRefGoogle Scholar
  14. 14.
    K. I. Arshinov, O. N. Krapivnaya, and V. V. Nevdakh, “Laser diagnostics of equilibrium a CO2: N2 gas mixture,” Atmos. Ocean. Opt. 27 (5), 381–385 (2014).CrossRefGoogle Scholar
  15. 15.
    L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, C. D. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).ADSCrossRefGoogle Scholar
  16. 16.
    T. J. Bridges and T. Y. Chang, “Accurate rotational constants of CO2 from measurements of cw beats in bulk GaAs between CO2 vibrational-rotational laser lines,” Phys. Rev. Lett. 22, 811–815 (1969).ADSCrossRefGoogle Scholar
  17. 17.
    V. P. Kudrya, “Calculation of the Voigt function value at the line center,” Opt. Spektrosk. 55 (6), 113–114 (1983).Google Scholar
  18. 18.
    R. L. Abrams, “Broadening coefficients for the P(20) CO2 laser transition,” Appl. Phys. Lett. 25 (10), 609–611 (1974).ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    M. O. Bulanin, V. P. Bulychev, and E. B. Khodos, “Calculation of parameters of rovibrational lines in 9.4 and 10.4 µm CO2 bands at different temperatures,” Opt. Spektrosk. 48 (4), 732–737 (1980).Google Scholar
  20. 20.
    V. I. Mudrov and V. L. Kushko, Measurement Processing Techniques (Radio i svyaz', Moscow, 1983) [in Russian].Google Scholar
  21. 21.
    N. S. Leshenyuk and V. V. Pashkevich, “Accuracy characteristics in the diagnostics of active media of CO2 lasers from gain coefficient measurements,” J. Appl. Spectrosc. 46 (4), 354–359 (1987).ADSCrossRefGoogle Scholar
  22. 22.
    R. K. Brimacombe and J. Reid, “Measurements of anomalous gain coefficients in transversely excited CO2 laser,” IEEE J. Quantum Electron. 19 (11), 1674–1679 (1983).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • K. I. Arshinov
    • 1
    Email author
  • O. N. Krapivnaya
    • 1
  • V. V. Nevdakh
    • 2
  1. 1.Institute of Technical AcousticsNational Academy of Sciences of BelarusVitebskBelarus
  2. 2.Belarusian National Technical UniversityMinskBelarus

Personalised recommendations