Skip to main content

Development of flexible mirror control algorithms


To reduce the effect of the time delay on the operation of an adaptive system treated as a dynamic feedback system, the present-day approach to the correction of turbulent distortions of optical radiation supposes application of new control algorithms for the correcting mirror on the basis of forecasting phase distortions. Results of the numerical simulation are presented.

This is a preview of subscription content, access via your institution.


  1. 1.

    A. L. Rukosuev, A. V. Kudryashov, A. N. Lylova, V. V. Samarkin, and Yu. V. Sheldakova, “Adaptive optics system for real-time wavefront correction,” Atmos. Ocean. Opt. 28 (4), 381–386 (2015).

    Article  Google Scholar 

  2. 2.

    V. P. Lukin, “Dynamic characteristics of adaptive optics systems,” Opt. Atmos. Okeana 23 (11), 1027–1035 (2010).

    Google Scholar 

  3. 3.

    V. V. Lavrinov, E. A. Kopylov, and V. P. Lukin, “Development of effective algorithms for controlling adaptive optics systems and laser optoelectronic systems,” in Proc. of V Scientific-Engineering Conf. of OAO “GSKB’ Almaz-Antei’”, Moscow, September 25–27, 2014 (Almaz-Antei, Moscow, 2014) [in Russian].

    Google Scholar 

  4. 4.

    L. V. Antoshkin, V. V. Lavrinov, L. N. Lavrinova, and V. P. Lukin, “Differential method for wavefront sensor measurements of turbulence parameters and wind velocity,” Atmos. Ocean. Opt. 21 (1), 64–68 (2008).

    Google Scholar 

  5. 5.

    J. Vernin and F. Roddier, “Experimental determination of two-dimensional spatiotemporal power spectra of stellar light scintillation. Evidence for a multilayer structure of the air turbulence in the upper troposphere,” J. Opt. Soc. Am. 63, 270–273 (1973).

    ADS  Article  Google Scholar 

  6. 6.

    V. V. Lavrinov, L. N. Lavrinova, L. V. Antoshkin, and V. P. Lukin, “Measurement of transverse wind transfer of atmospheric turbulence on the basis of Shack–Hartmann sensor,” Gornyi Informatsionno-Analiticheskii Bull. 17 (12), 129–133 (2009).

    Google Scholar 

  7. 7.

    L. V. Antoshkin, V. V. Lavrinov, L. N. Lavrinova, V. P. Lukin, and M. V. Tuev, “Optimization of control of a Harmann-sensor-based adaptive bimorph mirror,” in Methods and Instruments for Data Transmission and Processing (Radiotekhnika, Moscow, 2009), No. 11, pp. 25–34 [in Russian].

    Google Scholar 

  8. 8.

    Yu. V. Sheldakova, A. V. Kudryashov, A. L. Rukosuev, V. V. Samarkin, and T. Yu. Cherezova, “The use of hybrid algorithm controlling bimorph mirror to focus light radiation,” Atmos. Ocean. Opt. 20 (4), 342–344 (2007).

    Google Scholar 

  9. 9.

    A. S. Sobolev, T. Yu. Cherezova, and A. V. Kudryashov, “Analytical and numerical models of a bimorph mirror,” Atmos. Ocean. Opt. 18 (3), 254–258 (2005).

    Google Scholar 

  10. 10.

    E. A. Kopylov and V. P. Lukin, “Statistic characteristics of the DM2-100-31 bimorph mirror and a possibility of its application in the adaptive optical system of Big Solar Vacuum Telescope,” Opt. Atmos. Okeana 23 (12), 1111–1113 (2010).

    Google Scholar 

  11. 11.

    D. A. Bezuglov and R. A. Zabrodin, “Method of flexible adaptive piezoceramic mirror approximation by a limited number of Zernike polynomials,” Atmos. Ocean. Opt. 19 (9), 729–733 (2006).

    Google Scholar 

  12. 12.

    V. P. Lukin and B. V. Fortes, Adaptive Beamforming and Imaging in the Atmosphere (Izd-vo SO RAN, Novosibirsk, 1999) [in Russian].

  13. 13.

    V. P. Lukin, N. N. Botygina, O. N. Emaleev, V. P. Korol’kov, L. N. Lavrinova, R. K. Nasyrov, A. G. Poleshchuk, and V. V. Cherkashin, “Shack–Hartmann sensor based on a low-aperture off-axis diffraction lens array,” Avtometriya 45 (2), 88–98 (2009).

    Google Scholar 

  14. 14.

    L. V. Antoshkin, V. V. Lavrinov, L. N. Lavrinova, V. P. Lukin, and M. V. Tuev, “Peculiarities of forestalling correction of the turbulent distortions according to measurements of the Shack–Hartmann sensor,” Atmos. Ocean. Opt. 24 (3), 313–318 (2011).

    Article  Google Scholar 

  15. 15.

    R. E. Kalman, “A new approach to linear filtering and prediction problems,” Trans. ASME J. Basic Eng., No. 3, 35–45 (1960).

    Article  Google Scholar 

  16. 16.

    C. Petit, J.-M. Conan, C. Kulcsar, H.-F. Raynaud, T. Fusco, J. Montri, and D. Rabaud, “First laboratory demonstration of closed-loop Kalman based optimal control for vibration filtering and simplified MCAO,” Proc. SPIE—Int. Soc. Opt. Eng. 6272, 62721 (2006).

    Google Scholar 

  17. 17.

    V. V. Lavrinov, L. N. Lavrinova, and V. M. Tuev, “Wavefront reconstruction based on the results of light-field conversion by a Shack–Hartmann sensor,” Optoelectron., Instrum. Data Proc. 49 (3), 305–312 (2013).

    Article  Google Scholar 

  18. 18.

    V. V. Lavrinov, L. N. Lavrinova, and V. M. Tuev, “Numerical simulation of the algorithm to compute the voltage control for the flexible mirror depending on the representation of information on the wavefront,” Opt. Atmos. Okeana 27 (10), 925–931 (2014).

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to L. V. Antoshkin.

Additional information

Original Russian Text © L.V. Antoshkin, V.V. Lavrinov, L.N. Lavrinova, 2015, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Antoshkin, L.V., Lavrinov, V.V. & Lavrinova, L.N. Development of flexible mirror control algorithms. Atmos Ocean Opt 29, 84–88 (2016).

Download citation


  • wavefront
  • control algorithm
  • flexible mirror