Skip to main content

Analogue of bead lightning in a pulse discharge initiated by runaway electrons in atmospheric pressure air


A breakdown initiated by runaway electrons in an inhomogeneous electric field in atmospheric pressure air was studied. Bright plasma channels (spark filaments) in the center of the discharge gap were observed on the background of a diffuse discharge by applying high-voltage pulses with an amplitude of about 200 kV across the discharge gap with an interelectrode distance of 18 mm. Their occurrence probability is no more than 10%. The glow of the bright plasma channels is similar to that of a spark channel. It was found that the bright plasma channels appear with a decrease in the discharge current. Its radiation intensity is an order of magnitude lower than that of the diffuse discharge. Such bright plasma channels were observed in pulseperiodic discharges, where nanosecond voltage pulses with amplitudes of 10–15 kV were applied across the discharge gap with an interelectrode distance of 6 mm. The pulse repetition rate was about 400 Hz. Occurrence of the bright plasma channels on the background of diffuse discharge is caused by generation of runaway electrons and the discharge current redistribution over the discharge plasma cross-section during a decrease in the discharge current. It is assumed that the discharge recorded is an analogue of bead lightning observed in the Earth’s atmosphere.

This is a preview of subscription content, access via your institution.


  1. 1.

    J. Barry, Ball Lightning and Bead Lightning: Extreme Forms of Atmospheric Electricity (Plenum Press, 1980).

    Book  Google Scholar 

  2. 2.

    I. P. Stakhanov, Physical Nature of Ball Lightning (Nauchnyi mir, Moscow, 1996) [in Russian].

    Google Scholar 

  3. 3.

    E. M. Bazelyan and Yu. P. Raizer, Physics of Lightning and Lightning Protection (Fizmatlit, Moscow, 2001) [in Russian].

    Google Scholar 

  4. 4.

    V. A. Rakov and M. A. Uman, Lightning: Physics and Effects (UK, Cambridge University Press, Cambridge, 2003).

    Book  Google Scholar 

  5. 5.

    Yu. R. Alanakyan, “Nature of bead lightning. Structure of the streak lightning channel,” Dokl. Rus. Akad. Sci. 425 (3), 328–330 (2009).

    MATH  Google Scholar 

  6. 6.

    V. A. Bityurin, V. Yu. Velikodnyi, and I. A. Samuolis, “Properties of erosive discharge in a gas–dispersion flow,” Tech. Phys. Lett. 35 (11), 1003–1006 (2009).

    Article  ADS  Google Scholar 

  7. 7.

    F. I. Vysikailo, A. P. Ershov, M. I. Kuz’min, A. S. Tivkov, and B. V. Chekalin, “Features of current transfer in a discharge in a supersonic transverse gas flow during formation of cylindrical, cumulative structures (plasmoids),” Fiziko-Khimicheskaya Kinetika Gazovoi Dinamike, No. 5, 1–31 (2007).

    Google Scholar 

  8. 8.

    G. O. Ludwig and M. M. F. Saba, “Bead lightning formation,” Phys. Plasm. 12, 093509 (2005).

    Article  ADS  Google Scholar 

  9. 9.

    A. M. Boichenko, “On the nature of bead lightning,” Plasma Phys. Rep. 22 (11), 917–920 (1996).

    ADS  Google Scholar 

  10. 10.

    V. F. Tarasenko, E. Kh. Baksht, A. G. Burachenko, I. D. Kostyrya, M. I. Lomaev, and D. V. Rybka, “Generation of supershort avalanche electron beams and formation of diffuse discharges in different gases at high pressure,” Plasma Devices Oper. 16 (4), 267–298 (2008).

    Article  Google Scholar 

  11. 11.

    V. F. Tarasenko, I. D. Kostyrya, and D. V. Rybka, “Nanosecond breakdown in atmospheric-pressure air due to runaway electrons,” Opt. Atmos. Okean. 25 (1), 103–108 (2012).

    Google Scholar 

  12. 12.

    Runaway Electrons Preionized Diffuse Discharges, Ed. by V.F. Tarasenko (Nova Science Publishers, Inc., New York, 2014).

  13. 13.

    M. I. Lomaev, D. V. Rybka, D. A. Sorokin, V. F. Tarasenko, and K. Yu. Krivonogova, “Radiative characteristics of nitrogen upon excitation by volume discharge initiated by runaway electron beam,” Opt. Spectrosc. 107 (1), 33–40 (2009).

    Article  ADS  Google Scholar 

  14. 14.

    T. Shao, V. F. Tarasenko, C. Zhang, M. I. Lomaev, D. A. Sorokin, P. Jan, A. V. Kozyrev, and E. Kh. Baksht, “Spark discharge formation in an inhomogeneous electric field under conditions of runaway electron generation,” Appl. Phys. 111 ((10), 023304 (2012).

    Article  Google Scholar 

  15. 15.

    V. F. Tarasenko, E. Kh. Baksht, M. I. Lomaev, D. V. Rybka, and D. A. Sorokin, “Transition of a diffuse discharge to a spark at nanosecond breakdown of high-pressure nitrogen and air in a nonuniform electric field,” Tech. Phys. 83 (8), 1115–1121 (2013).

    Article  Google Scholar 

  16. 16.

    E. Kh. Baksht, V. F. Tarasenko, Yu. V. Shut’ko, and M. V. Erofeev, “Point-like pulse-periodic UV radiation source with a short pulse duration,” Quantum Electron. 42 (2), 153–156 (2012).

    Article  ADS  Google Scholar 

  17. 17.

    D. V. Beloplotov, M. I. Lomaev, and V. F. Tarasenko, “On the nature of radiation of blue and green jets at laboratory discharges initiated by runaway electrons,” Opt. Atmos. Okeana 28 (4), 349–353 (2015).

    Google Scholar 

  18. 18.

    A. V. Gurevich and K. P. Zybin, “Runaway breakdown and electric discharge in thunderstorms,” Phys.-Uspekhi 44 (11), 1119–1140 (2001).

    Article  ADS  Google Scholar 

  19. 19.

    J. R. Dwyer, H. K. Rassoul, M. Al-Dayeh, L. Caraway, A. Chrest, B. Wright, E. Kozak, J. Jerauld, M. A. Uman, V. A. Rakov, D. M. Jordan, and K. J. Rambo, “X-ray bursts associated with leader steps in cloud-to-ground lightning,” Geophys. Res. Lett. 32, L01803 (2005).

    ADS  Google Scholar 

  20. 20.

    B. J. Hazelton, B. W. Grefenstette, D. M. Smith, J. R. Dwyer, X. M. Shao, S. A. Cummer, T. Chronis, E. H. Lay, and R. H. Holzworth, “Spectral dependence of terrestrial g-ray flashes on source distance,” Geophys. Res. Lett. 36, L01108 (2009).

    Article  ADS  Google Scholar 

  21. 21.

    D. V. Rybka, I. V. Andronikov, G. S. Evtushenko, A. V. Kozyrev, V. Yu. Kozhevnikov, I. D. Kostyrya, V. F. Tarasenko, M. V. Trigub, and Yu. V. Shut’ko, “Corona discharge in atmospheric pressure air under a modulated voltage pulse of 10 ms,” Atmos. Ocean. Opt. 26 (5), 449–453 (2013).

    Article  Google Scholar 

  22. 22.

    I. D. Kostyrya and V. F. Tarasenko, “Generation of runaway electrons and X-ray emission during breakdown of atmospheric-pressure air by voltage pulses with an ~0.5-μs front duration,” Plasma Phys. Rep. 41 (3), 269–273 (2015).

    Article  ADS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to V. F. Tarasenko.

Additional information

Original Russian Text © V.F. Tarasenko, D.V. Beloplotov, E.Kh. Baksht, A.G. Burachenko, M.I. Lomaev, 2015, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tarasenko, V.F., Beloplotov, D.V., Baksht, E.K. et al. Analogue of bead lightning in a pulse discharge initiated by runaway electrons in atmospheric pressure air. Atmos Ocean Opt 28, 591–597 (2015).

Download citation


  • breakdown of atmospheric pressure air in an inhomogeneous electric field
  • experimental simulation of bead lightning
  • runaway electrons