Comparison results of satellite and ground-based spectroscopic measurements of CO, CH4, and CO2 total contents

Abstract

A significant amount of satellite and ground-based data on the CO, CO2, and CH4 total contents for 2010–2013 was collected, classified, and analyzed. Transition relations between satellite and groundbased data on the content of impurities under study at different measuring sites (NDACC/ GAW and OIAP RAS stations) with different spatial and temporal resolutions have been found. A high correlation between daily average satellite-measured CO contents (AIRS v6 (R 2 = 0.48–0.96), IASI MetOp-A (R 2 = 0.25–0.86), and MOPITT v6 Joint (R 2 = 0.30–0.83) products, averaging over 1° × 1°) and the ground-based solar spectrometers’ data was ascertained for background conditions. In the case of high pollution of the mixing layer, a significant underestimation of the CO total content (by 1.7–4.7 times, depending on the sensor and observation point) by satellite sensors has been noted. Representative transition relations and correlation coefficients (R 2 ≥ 0.5) between satellite data on daily average CH4 contents and the data from ground-based diffraction spectrometers of A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences (IAP RAS) and Fourier spectrometers of GAW stations have been found only for the AIRS sensor. The best correlation with ground-based measurement data on CO2 (R 2 = 0.25 for daily average values, averaging over 1° × 1°) was found for the IASI sensor. The daily average CH4 total contents from the IASI MetOp-A sensor weakly correlate with the ground-based data and with AIRS data.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    L. N. Yurganov, V. Rakitin, A. Dzhola, T. August, E. Fokeeva, M. George, G. Gorchakov, E. Grechko, S. Hannon, A. Karpov, L. Ott, E. Semutnikova, R. Shumsky, and L. Strow, “Satelliteand groundbased CO total column observations over 2010 Russian fires: accuracy of top-down estimates based on thermal IR satellite data,” Atmos. Chem. Phys. 11, 7925–7942 (2011). doi 10.5194/acp-11-7925-2011

    Article  ADS  Google Scholar 

  2. 2.

    E. V. Fokeeva, A. N. Safronov, V. S. Rakitin, L. N. Yurganov, E. I. Grechko, and R. A. Shumskii, “Investigation of the 2010 July–August fires impact on carbon monoxide atmospheric pollution in Moscow and its outskirts, estimating of emissions,” Izv., Atmos. Ocean. Phys. 47 (6), 682–698 (2011).

    Article  Google Scholar 

  3. 3.

    O. Garsia, M. Schneider, F. Hase, T. Blumenstok, A. Wiegele, E. Sepulveda, and A. Gomezpelaez, “Validation of the IASI operational CH4 and N2O products using ground-based Fourier Transform Spectrometer: Preliminary results at the Izaca Observatory (28° N, 17° W),” Annals of Geophys. 56 (2013). doi 10.4401/ag-6326

  4. 4.

    R. Parker, H. Boesch, A. Cogan, A. Fraser, L. Feng, P. I. Palmer, J. Messerschmidt, N. Deutscher, D. W. T. Griffith, J. Notholt, and P. O. Wennberg, “Methane observations from the Greenhouse Gases Observing SATellite: Comparison to ground-based TCCON data and model calculations,” Geophys. Res. Lett. 38 (15) (2011). doi 10.1029/2011GL047871

    Google Scholar 

  5. 5.

    C. Clerbaux, A. Boynard, L. Clarisse, M. George, J. Hadji-Lazaro, H. Herbin, D. Hurtmans, M. Pommier, A. Razavi, S. Turquety, C. Wespes, and P.-F. Coheur, “Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder,” Atmos. Chem. Phys. 9, 6041–6054 (2009). doi 10.5194/acp-9-6041-2009

    Article  ADS  Google Scholar 

  6. 6.

    www.esa-ghg-cci.org/index.php?q=webfm_send/152

  7. 7.

    M. N. Deeter, S. Martinez-Alonso, D. P. Edwards, L. K. Emmons, J. C. Gille, H. M. Worden, J. V. Pittman, B. C. Daube, and S. C. Wofsy, “Validation of MOPITT Version 5 thermal-infrared, near-infrared, and multispectral carbon monoxide profile retrievals for 2000–2011,” J. Geoph., Res., A 118, 6710–6725 (2013). doi 10.1002/jgrd.50272

    ADS  Google Scholar 

  8. 8.

    R. Sussmann, W. Stremme, M. Buchwitz, and R. de Beek, “Validation of ENVISAT/SCIAMACHY columnar methane by solar FTIR spectrometry at the Ground-Truthing Station Zugspitze,” Atmos. Chem. Phys. 5, 2419–2429 (2005).

    Article  ADS  Google Scholar 

  9. 9.

    M. Yu. Arshinov, S. V. Afonin, B. D. Belan, V. V. Belov, Yu. V. Gridnev, D. K. Davydov, T. Machida, Ph. Nedelec, J.-D. Paris, and A. V. Fofonov, “Comparison of satellite and aircraft measurements of gas composition in troposphere above the South of West Siberia,” Opt. Atmos. Okeana, 26 (9), 773–782 (2013).

    Google Scholar 

  10. 10.

    A. N. Safronov, E. V. Fokeeva, V. S. Rakitin, L. N. Yurganov, and E. I. Grechko, “Emissions of carbon oxide in summer 2010 in the central part of the Central Russian Land and estimation of their uncertainties when using different vegetation maps,” Issled. Zemli Kosmosa, No. 4, 1–16 (2012).

    Google Scholar 

  11. 11.

    S. A. Sitnov, G. I. Gorchakov, M. A. Sviridenkov, I. A. Gorchakova, A. V. Karpov, and A. B. Kolesnikova, “Satellite monitoring of the smoke plume from forest and peat fires over European Russia in July–August, 2010,” Opt. Atmos. Okeana 25 (12), 1062–1076 (2012).

    Google Scholar 

  12. 12.

    M. N. Deeter, L. K. Emmons, G. L. Francis, D. P. Edwards, J. C. Gille, J. X. Warner, B. Khattatov, D. Ziskin, J.-F. Lamarque, S.-P. Ho, V. Yudin, J.-L. Attie, D. Packman, J. Chen, D. Mao, and James R. Drummond, “Operational carbon monoxide retrieval algorithm and selected results for the MOPITT instrument,” J. Geophys. Res., D 108 (14), 4399 (2003). doi 10.1029/2002JD003186

    Article  ADS  Google Scholar 

  13. 13.

    J. R. Drummond, J. Zou, F. Nichitiu, J. Kar, R. Deschambaut, and J. Hackett, “A review of 9-year performance and operation of the MOPITT instrument,” J. Adv. Space Res. 45, 760–774 (2010). doi 10.1016/j.asr.2009.11.019

    Article  ADS  Google Scholar 

  14. 14.

    M. N. Deeter, S. Martinez-Alonso, D. P. Edwards, L. K. Emmons, J. C. Gille, H. M. Worden, C. Sweeney, J. V. Pittman, B. C. Daube, and S. C. Wofsy, “The MOPITT Version 6 product: Algorithm enhancements and validation,” Atmos. Meas. Tech. 7, P. 3623–3632 (2014). doi 10.5194/amt-7-3623-2014

    Article  Google Scholar 

  15. 15.

    H. M. Worden, M. N. Deeter, D. P. Edwards, J. C. Gille, J. R. Drummond, and P. Nedelec, “Observations of near-surface carbon monoxide from space using MOPITT multispectral retrievals,” Geophys. Res. 115, D18314 (2010). doi 10.1029/2010JD014242

    Article  ADS  Google Scholar 

  16. 16.

    H. H. Aumann, M. T. Chahine, C. Gautier, M. Goldberg, E. Kalnay, L. McMillin, H. Revercomb, P. W. Rosenkranz, W. L. Smith, D. Staelin, L. Strow, and J. Susskind, “AIRS/AMSU/HSB on the Aqua Mission: Design, science objectives, data products and processing systems,” IEEE Trans. Geosci. Remote. Sens. 41, 253–264 (2003).

    Article  ADS  Google Scholar 

  17. 17.

    W. W. McMillan, K. D. Evans, C. D. Barnet, E. S. Maddy, G. W. Sachse, and G. S. Diskin, “AIRS V5 CO retrieval with DACOM in situ measurements,” IEEE Trans. Geosci. Remote. Sens. 49, 1–12 (2011). doi 10.1109/TGRS.2011.2106505

    Article  Google Scholar 

  18. 18.

    AIRS/AMSU/HSB Version 6 Level 2 Product User Guide, Ed. by Edward T. Olsen. http://disc.sci.gsfc.nasa.gov/AIRS/documentation/v6_docs/v6releasedocs-1/V6_ L2_Product_User_Guide.pdf.

  19. 19.

    T. August, D. Klaes, P. Schlussel, T. Hultberg, M. Crapeau, A. Arriaga, A. O' Carroll, D. Coppens, R. Munro, and X. Calbet, “IASI on Metop-A: Operational level 2 retrievals after five years in orbit,” J. Quant. Spectrosc. Radiat. Transfer 113, 1340–1371 (2012).

    Article  ADS  Google Scholar 

  20. 20.

    C. Clerbaux, S. Turquety, and P. F. Coheur, “Infrared remote sensing of atmospheric composition and air quality: Towards operational applications,” C. R. Geosci. 342, 349–356 (2010).

    Article  Google Scholar 

  21. 21.

    C. Clerbaux, A. Boynard, L. Clarisse, M. George, J. Hadji-Lazaro, H. Herbin, D. Hurtmans, M. Pommier, A. Razavi, S. Turquety, C. Wespes, and P.-F. Coheur, “Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder,” Atmos. Chem. Phys. 9, 6041–54 (2009). doi 10.5194/acp-9-6041-2009

    Article  ADS  Google Scholar 

  22. 22.

    G. S. Golitsyn, E. I. Grechko, G. Ch. Van, P. S. Van, A. V. Dzhola, A. S. Emilenko, V. M. Kopeikin, V. S. Rakitin, A. N. Safronov, and E. V. Fokeeva, “Studying the pollution of Moscow and Beijing atmospheres with carbon monoxide and aerosol,” Izv., Atmos. Ocean. Phys. 51 (1), 1–11 (2015).

    Article  Google Scholar 

  23. 23.

    V. S. Rakitin, E. V. Fokeeva, E. I. Grechko, A. V. Dzhola, and R. D. Kuznetsov, “Variations of the total content of carbon monoxide over Moscow megapolis,” Izv., Atmos. Ocean. Phys. 47 (1), 59–66 (2011).

    Article  Google Scholar 

  24. 24.

    W. Pu-Cai, G. S. Golitsyn, W. Geng-Chen, E. I. Grechko, V. S. Rakitin, and A. V. Dzhola, “Variation trend and characteristics of anthropogenic CO column content in the atmosphere over Beijing and Moscow,” Atmosph. Ocean. Sci. Lett., J 7 (3), 243–247 (2014).

    Article  Google Scholar 

  25. 25.

    L. Yurganov, W. McMillan, E. Grechko, and A. Dzhola, “Analysis of global and regional CO burdens measured from space between 2000 and 2009 and validated by ground-based solar tracking spectrometers,” Atmos. Chem. Phys. 10, 3479–3494 (2010).

    Article  ADS  Google Scholar 

  26. 26.

    A. N. Safronov, E. V. Fokeeva, V. S. Rakitin, E. I. Grechko, and R. A. Shumsky, “Severe wildfires near Moscow, Russia in 2010: Modeling of carbon monoxide pollution and comparisons with observations,” Remote Sens. 7 (1), 395–429 (2015). doi 10.3390/rs70100395

    Article  ADS  Google Scholar 

  27. 27.

    J. Winderlich, C. Gerbig, O. Kolle, and M. Heimann, “Inferences from CO2 and CH4 concentration profiles at the Zotino Tall Tower Observatory (ZOTTO) on regional summertime ecosystem fluxes,” Biogeosci. 11, 2055–2068 (2014). doi 10.5194/bg-11-2055-2014

    Article  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. S. Rakitin.

Additional information

Original Russian Text © V.S. Rakitin, Yu.A. Shtabkin, N.F. Elansky, N.V. Pankratova, A.I. Skorokhod, E.I. Grechko, A.N. Safronov, 2015, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rakitin, V.S., Shtabkin, Y.A., Elansky, N.F. et al. Comparison results of satellite and ground-based spectroscopic measurements of CO, CH4, and CO2 total contents. Atmos Ocean Opt 28, 533–542 (2015). https://doi.org/10.1134/S1024856015060135

Download citation

Keywords

  • carbon monoxide
  • methane
  • carbon dioxide
  • atmospheric spectroscopy
  • remote sensing
  • satellite sensing
  • background and polluted regions
  • atmospheric boundary layer