Advertisement

Atmospheric and Oceanic Optics

, Volume 28, Issue 5, pp 481–486 | Cite as

Design and modeling of a photoacoustic gas analyzer with a thermal source for carbon isotope ratio analysis

  • K. Yu. OsipovEmail author
  • V. A. Kapitanov
  • Yu. N. Ponomarev
  • A. I. Karapuzikov
Optical Instrumentation

Abstract

A diagram is suggested and numerical simulation is carried out of a photoacoustic gas analyzer with a thermal source and first order interference filter for carbon isotope ratio analysis. An optimal spectral range for gas analyzer operation is selected. In the wavelength range selected, the spectral parameters of the atmosphere are analyzed, as well as of some gases, which, being present in samples under study, could affect the measurement results. The gas analyzer suggested allows us to measure the carbon isotope ratio 13C/12C in CO2 samples with a minimal error of about 0.5‰, and could be useful for detection of such gases as SO2, CO, and NH3, absorption lines of which fall in the selected spectral range.

Keywords

gas analysis carbon isotope ratio photoacoustic detector absorption spectrum Fabry–Perot interferometer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. G. Ageev, A. P. Zotikova, N. L. Padalko, Yu. N. Ponomarev, D. A. Savchuk, V. A. Sapozhnikova, and E. V. Chernikov, “Variation of H2O, CO2, and CO2 isotope composition in tree rings of siberian stone pine,” Atmos. Ocean. Opt. 24 (4), 390–395 (2011).CrossRefGoogle Scholar
  2. 2.
    M. Erdelyi, D. Richter, and F. K. Tittel, “13CO2/12CO2 isotopic ratio measurements using a difference frequency-based sensor operating at 4.35 µm,” Appl. Phys., B 75 (2-3), 289–295 (2002).CrossRefADSGoogle Scholar
  3. 3.
    A. S. Modak, “Stable isotope breath tests in clinical medicine: A review,” J. Breath Res. 1 (1), R1–R13 (2007)CrossRefGoogle Scholar
  4. 4.
    E. V. Stepanov, “Laser analysis of the 13C/12C isotope ratio in CO2 in exhaled air,” Quantum Electron. 32 (11), 981–986 (2002).CrossRefADSGoogle Scholar
  5. 5.
    G. Gagliardi, A. Castrillo, R. Q. Iannone, E. R. T. Kerstel, and L. Gianfrani, “High-precision determination of the 13CO2/12CO2 isotope ratio using a portable 2.008-µm diode-laser spectrometer,” Appl. Phys., B 77 (1), 119–124 (2003).CrossRefGoogle Scholar
  6. 6.
    E. V. Stepanov, A. N. Glushko, S. G. Kasoev, A. V. Koval’, and D. A. Lapshin, “Near-IR laser-based spectrophotometer for comparative analysis of isotope content of CO2 in exhale air samples,” Quantum Electron. 41 (12), 1124–1130 (2011).CrossRefADSGoogle Scholar
  7. 7.
    W. Meier-Augenstein, “Applied gas chromatography coupled to isotope ratio mass spectrometry,” J. Chromatog., A 842 (1-2), 351–371 (1999).CrossRefGoogle Scholar
  8. 8.
    K. Yu. Osipov and V. A. Kapitanov, “Numerical modeling of SF6 photoacoustic gas analyzer in the atmosphere with frequency modulation of thermal radiation,” Atmos. Ocean. Opt. 26 (2), 149–153 (2013).CrossRefGoogle Scholar
  9. 9.
    LumaScence Technologies. SF6 Leak Detector 3434i. http://www.lumasenseinc.com/EN/products/gas-monitoring/gas-monitoring-instruments/sf6-leakdetector. htmlGoogle Scholar
  10. 10.
    L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J. M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).CrossRefADSGoogle Scholar
  11. 11.
    O. Yu. Nikiforova, Yu. N. Ponomarev, and A. I. Karapuzikov, “Accounting for humidity of exhaled air for retrieving gaseous biomarkers,” Atmos. Ocean. Opt. 26 (6), 550–555 (2013).CrossRefGoogle Scholar
  12. 12.
    Electro optical components, inc. Infrared Optical Filters. IR Interference Filters: 1.5–20 µm. http://www.eoc-inc.com/noc/angular_shift.htmGoogle Scholar
  13. 13.
    V. A. Kapitanov, V. Zeninari, D. Courtois, and Yu. N. Ponomarev, “Helmholtz resonant photoacoustic cell for spectroscopy of weakly absorbing gases and gas analysis,” Atmos. Ocean. Opt. 12 (10), 928–940 (1999).Google Scholar
  14. 14.
    K. Song, H. K. Cha, V. A. Kapitanov, Yu. N. Ponomarev, A. P. Rostov, D. Courtois, B. Parvitte, and V. Zeninari, “Differential Helmholtz resonant photoacoustic cell for spectroscopy and gas analysis with room-temperature diode lasers,” Appl. Phys., B 75 (2–3), 215–227 (2002).CrossRefADSGoogle Scholar
  15. 15.
    S. Kurth, K. Hiller, N. Neumann, M. Heinze, W. Doetzel, and T. Gessner, “Tunable Fabry–Perot interferometer for 3–5 µm wavelength with bulk micromachined reflector carrier,” Proc. SPIE 4983, 215–226 (2003).CrossRefADSGoogle Scholar
  16. 16.
    J. A. L. Max, L. Audaire et al., Methodes et Techniques de Traitement du Signal et Applications aux Mesures Physiques (Masson, Masson, Paris, New York, 1981).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • K. Yu. Osipov
    • 1
    • 2
    Email author
  • V. A. Kapitanov
    • 1
  • Yu. N. Ponomarev
    • 1
  • A. I. Karapuzikov
    • 2
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia
  2. 2.National Research Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations