Advertisement

Atmospheric and Oceanic Optics

, Volume 28, Issue 5, pp 455–465 | Cite as

Technique for determining mass concentrations of aerosol fractions in the surface air from multifrequency lidar sounding data

  • S. A. LysenkoEmail author
  • M. M. Kugeiko
  • V. V. Khomich
Remote Sensing of Atmosphere, Hydrosphere, and Underlying Surface

Abstract

A technique for determining mass concentrations of aerosol particles smaller than 1.0, 2.5, 10, and 30 µm in the surface air is suggested. The technique involves remote lidar sounding of the atmosphere at the wavelengths λ = 0.355, 0.532, 1.064, 2.13 µm, retrieval of the spectral and spatial distributions of the aerosol extinction coefficient from the lidar signals, and their conversion to the spatial distributions of the concentrations of aerosol fractions on the basis of regression relations between optical and microphysical aerosol parameters. To improve the accuracy and stability of the solution of a system of lidar equations, the calibration constants and lidar ratios at the wavelengths of the sounding radiation are chosen taking into account the multicollinearity of the spectral aerosol extinction coefficients, which is expressed in the form of a multiple regression equation. The regressions were derived within the World Meteorological Organization’s optical model of urban aerosol under wide variations in model parameters which characterize the particle size distribution and the complex refractive index of the aerosol matter. Numerical experiments on remote laser sounding of the mass concentration of aerosol fractions in the atmosphere have shown the robustness of the technique proposed.

Keywords

urban aerosol respirable particles mass concentration remote laser sounding multiple regressions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. A. Silva, J. J. West, Y. Zhang, S. C. Anenberg, J. F. Lamarque, D. T. Shindell, W. J. Collins, S. Dalsoren, G. Faluvegi, G. Folberth, L. W. Horowitz, T. Nagashima, V. Naik, S. Rumbold, R. Skeie, K. Sudo, T. Takemura, D. Bergmann, P. CameronSmith, I. Cionni, R. M. Doherty, V. Eyring, B. Josse, I. A. MacKenzie, D. Plummer, M. Righi, D. S. Stevenson, S. Strode, S. Szopa, and G. Zeng, “Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change,” Environ. Res. Lett. 8 (3), 034005 (2013).CrossRefADSGoogle Scholar
  2. 2.
    A. P. Klimenko, V. I. Korolev, and V. I. Shevtsov, Dust Concentration Monitoring (Tekhnika, Kiev, 1980) [in Russian].Google Scholar
  3. 3.
    N. I. Dudkin and I. S. Adaev, “Measurements of aerosol mass concentration,” Mir Izmerenii, No. 11, 37–40 (2007).Google Scholar
  4. 4.
    P. Gorner, X. Simon, D. Bemer, and G. Liden, “Workplace aerosol mass concentration measurement using optical particle counters,” J. Environ. Monit. 14 (2), 420–428 (2012).CrossRefGoogle Scholar
  5. 5.
    A. P. Chaikovskii, A. P. Ivanov, Yu. S. Balin, A. V. El’nikov, G. F. Tulinov, I. I. Plyusnin, O. A. Bukin, and B. B. Chen, “CIS-LiNet lidar network for monitoring aerosol and ozone: Methodology and instrumentation,” Atmos. Ocean. Opt. 18 (12), 958–964 (2005).Google Scholar
  6. 6.
    M. Adam, M. Pahlow, V. Kovalev, J. M. Ondov, M. B. Parlange, and N. Nair, “Aerosol optical characterization by nephelometer and lidar: The Baltimore Supersite experiment during the Canadian forest fire smoke intrusion,” J. Geophys. Res., D 109 (16) (2004). doi 10.1029/2003JD004047Google Scholar
  7. 7.
    V. V. Zavyalov, C. C. Marchant, G. E. Bingham, T. D. Wilkerson, J. L. Hatfield, R. S. Martin, P. J. Silva, K. D. Moore, J. Swasey, D. J. Ahlstrom, and T. L. Jones, “Aglite lidar: Calibration and retrievals of well characterized aerosols from agricultural operations using a three-wavelength elastic lidar,” J. Appl. Remote Sens. 3 (1), 033522-01–033522-21 (2009).Google Scholar
  8. 8.
    L. S. Ivlev, A. V. Vasil’ev, B. D. Belan, M. V. Panchenko, and S. A. Terpugova, “Optical-microphysical models of urban aerosols,” in Proc. of the 3rd International Conference “Natural and Anthropogenic Aerosols” (Izd-vo NIIKh SPbGU, St. Petersburg, 2003), pp. 161–170 [in Russian].Google Scholar
  9. 9.
    S. S. Khmelevtsov, V. A. Korshunov, V. M. Nikitin, and V. V. Kobelev, “Multiwavelength and polarization lidar sounding of industrial aerosol emissions,” Atmos. Ocean. Opt. 18 (3), 212–217 (2005).Google Scholar
  10. 10.
    G. M. Krekov, M. M. Krekova, and A. Ya. Sukhanov, “Estimate of the promising white-light lidar efficiency for sensing of the stratus cloud microphysical parameters: 1. Analytical review,” Opt. Atmos. Okeana 22 (7), 661–670 (2009).Google Scholar
  11. 11.
    World Meteorological Organization, World Climate Research Programme: A Preliminary Cloudless Standard Atmosphere for Radiation Computation. Report WCP112, WMO/TD-24 (Genewa, 1986).Google Scholar
  12. 12.
    V. E. Zuev, V. V. Kaul’, and I. V. Samokhvalov, Laser Sounding of Industrial Aerosols (Nauka, Novosibirsk, 1986) [in Russian].Google Scholar
  13. 13.
    G. M. Krekov, S. I. Kavkyanov, and M. M. Krekova, Interpretation of Optical Atmosphere Sounding Signals (Nauka, Novosibirsk, 1987) [in Russian].Google Scholar
  14. 14.
    C. Bockmann, U. Wandinger, A. Ansmann, J. Bösenberg, V. Amiridis, A. Boselli, A. Delaval, F. De Tomasi, M. Frioud, I. V. Grigorov, A. Hagard, M. Horvat, M. Iarlori, L. Komguem, S. Kreipl, G. Larcheveque, V. Matthias, A. Papayannis, G. Pappalardo, F. Rocadenbosch, J. Antonio Rodrigues, J. Schneider, V. Shcherbakov, and M. Wiegner, “Aerosol lidar intercomparison in the framework of the EARLINET project. 2. Aerosol backscatter algorithms,” Appl. Opt. 43 (4), 977–989 (2004).CrossRefADSGoogle Scholar
  15. 15.
    V. A. Kovalev and W. E. Eichinger, Elastic Lidar: Theory, Practice, and Analysis Methods (John Wiley & Sons, Hoboken, 2004).CrossRefGoogle Scholar
  16. 16.
    S. A. Lisenko and M. M. Kugeiko, “A method for retrieving vertical distribution of aerosol mass concentration in atmosphere from results of lidar sensing at Nd:YAG laser wavelengths,” Opt. Spectrosc. 110 (3), 474–482 (2011).CrossRefADSGoogle Scholar
  17. 17.
    S. A. Lysenko and M. M. Kugeiko, “Retrieval of optical and microphysical characteristics of postvolcanic stratospheric aerosol from the results of three-frequency lidar sensing,” Atmos. Ocean. Opt. 24 (5), 466–477 (2011).CrossRefGoogle Scholar
  18. 18.
    S. A. Lysenko and M. M. Kugeiko, “Retrieval of the mass concentration of dust in industrial emissions from optical sensing data,” Atmos. Ocean. Opt. 25 (1), 35–43 (2012).CrossRefGoogle Scholar
  19. 19.
    S. V. Samoilova, Yu. S. Balin, G. P. Kokhanenko, and I. E. Penner, “Investigations of the vertical distribution of troposphere aerosol layers based on the data of multifrequency raman lidar sensing: Part 1. Methods of optical parameter retrieval,” Atmos. Ockean. Opt. 22 (3), 302–315 (2009).CrossRefGoogle Scholar
  20. 20.
    V. A. Kovalev, “Stable near-end solution of the lidar equation for clear atmospheres,” Appl. Opt. 42 (3), 585–591 (2003).CrossRefADSGoogle Scholar
  21. 21.
    M. M. Kugeiko and S. A. Lysenko, Laser Spectronephelometry of Aerodispersion Media (BGU, Minsk, 2012) [in Russian].Google Scholar
  22. 22.
    S. A. Lisenko and M. M. Kugeiko, “Regression approach to analyzing the informativity and interpretation of aerosol optical measurements,” J. Appl. Spectrosc. 76 (6), 826–832 (2009).CrossRefADSGoogle Scholar
  23. 23.
    K. S. Shifrin, Introduction in Ocean Optics (Gidrometeoizdat, Leningrad, 1983) [in Russian].Google Scholar
  24. 24.
    V. E. Zuev and G. M. Krekov, Optical Models of the Atmosphere (Gidrometeoizdat, Leningrad, 1986) [in Russian].Google Scholar
  25. 25.
    S. A. Lisenko and M. M. Kugeiko, “Nephelometric method for measuring mass concentrations of urban aerosols and their respirable fractions,” Atmos. Ocean. Opt. 27 (6), 587–595 (2014).CrossRefGoogle Scholar
  26. 26.
    G. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, New York, 1983).Google Scholar
  27. 27.
    NAPAP (1991) State of science and technology, The US National Acid Precipitation Assessment Program (Washington, 1991), vol. III, ch. 24, pp. 24–90.Google Scholar
  28. 28.
    J. E. Thompson, P. L. Hayes, J. L. Jimenez, K. Adachi, X. Zhang, J. Liu, R. J. Weber, and P. R. Buseck, “Aerosol optical properties at Pasadena, CA During CalNex 2010,” Atmos. Environ. 55, 190–200 (2012).CrossRefADSGoogle Scholar
  29. 29.
    J. Jung, H. Lee, Y. J. Kim, X. Liu, Y. Zhang, M. Hu, and N. Sugimoto, “Optical properties of atmospheric aerosols obtained by in situ and remote measurements during 2006 Campaign of Air Quality Research in Beijing (CAREBeijing-2006),” J. Geophys. Res., A 114 (D2) (2009). doi 10.1029/2008JD010337Google Scholar
  30. 30.
    A. Trier, N. Cabrini, and J. Ferrer, “Correlations between urban atmospheric light extinction coefficients and particle mass concentrations,” Atmosfera 10 (3), 151–160 (1997).Google Scholar
  31. 31.
    G. Titos, I. Foyo-Moreno, H. Lyamani, X. Querol, A. Alastuey, and L. Alados-Arboledas, “Optical properties and chemical composition of aerosol particles at an urban location: An estimation of the aerosol mass scattering and absorption efficiencies,” J. Geophys. Res., A 117 (D4) (2012). doi 10.1029/2011JD016671Google Scholar
  32. 32.
    C. Cattrall, J. Reagan, K. Thome, and O. Dubovic, “Variability of aerosol spectral lidar and backscatter and extinction ratio of key aerosol types derived from selected Aerosol Robotic Network locations,” J. Geophys. Res. 110 (D10) (2005). doi 10.1029/2004JD005124Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • S. A. Lysenko
    • 1
    Email author
  • M. M. Kugeiko
    • 1
  • V. V. Khomich
    • 1
  1. 1.Belorussian State UniversityMinskBelarus

Personalised recommendations