Atmospheric and Oceanic Optics

, Volume 28, Issue 5, pp 415–425 | Cite as

Ring dislocation of the coherence degree of a vortex Bessel beam in a turbulent atmosphere

  • I. P. LukinEmail author
Optics of Stochastically-Heterogeneous Media


Results of the theoretical consideration of the behavior of the coherence degree of a vortex Bessel optical beam propagating in a turbulent randomly inhomogeneous medium are presented. The influence of an optical vortex on the coherence degree of a Bessel beam in a randomly inhomogeneous medium is studied. The analysis of the problem is based on the solution of the equation for the second order mutual coherence function of the optical beam field. Based on this solution, the behavior of the absolute value of the second order mutual coherence function (coherence degree) of the vortex Bessel beam field is studied. It is shown that a ring dislocation the number of rings in which is equal to the value of the topological charge of the optical beam, forms in the central part of the two-dimensional field of the coherence degree of vortex Bessel beams at low levels of fluctuations in a turbulent atmosphere. The structure of the ring dislocation of the coherence degree of vortex Bessel optical beams in a turbulent atmosphere is studied in detail. For this purpose, two characteristics of the ring dislocation are introduced: its spatial coordinate and ring width. The influence of parameters of an optical beam (transverse wavenumber and topological charge) and atmospheric turbulence (coherence radius of a plane optical wave) on these characteristics of the ring dislocation of the coherence degree of a vortex Bessel optical beam is considered.


Bessel beam vortex beam optical radiation atmospheric turbulence coherence ring dislocation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. L. Andrews, Structured Light and its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces (Academic Press, New York, 2008).Google Scholar
  2. 2.
    L. Allen, S. M. Barnett, and M. J. Padgett, Optical Angular Momentum (Institute of Physics, Bristol, 2003).CrossRefGoogle Scholar
  3. 3.
    J. Leach, M. J. Padgett, S. M. Barnett, S. FrankeArnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett. 88 (25), 257901 (2002).CrossRefADSGoogle Scholar
  4. 4.
    G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Freespace information transfer using light beams carrying orbital angular momentum,” Opt. Express 12 (22), 5448–5456 (2004).CrossRefADSGoogle Scholar
  5. 5.
    C. Paterson, “Atmospheric turbulence and orbital angular momentum of single photons for optical communication,” Phys. Rev. Lett. 94 (15), 153901 (2005).CrossRefADSGoogle Scholar
  6. 6.
    G. Gbur, “The evolution of vortex beams in atmospheric turbulence,” Proc. SPIE—Int. Soc. Opt. Eng. 6878, 687804 (2008).Google Scholar
  7. 7.
    G. Gbur and R. K. Tyson, “Vortex beam propagation through atmospheric turbulence and topological charge conservation,” J. Opt. Soc. Amer., A 25 (1), 225–230 (2008).CrossRefADSGoogle Scholar
  8. 8.
    A. M. Yao and M. J. Padgett, “Orbital angular momentum: Origins, behavior and applications,” Adv. Opt. Photon 3 (2), 161–204 (2011).CrossRefGoogle Scholar
  9. 9.
    V. P. Aksenov and Ch. E. Pogutsa, “The effect of optical vortex on random Laguerre–Gauss shifts of a laser beam propagating in a turbulent atmosphere,” Atmos. Ocean. Opt. 26 (1), 13–17 (2013).CrossRefGoogle Scholar
  10. 10.
    V. P. Aksenov and Ch. E. Pogutsa, “Increase in laser beam resistance to random inhomogeneities of atmospheric permittivity with an optical vortex included in the beam structure,” Appl. Opt. 51 (30), 7262–7267 (2012).CrossRefADSGoogle Scholar
  11. 11.
    E. G. Abramochkin and V. G. Volostnikov, “Spiral light beams,” Phys.-Uspekhi 47 (12), 1177–1204 (2004).CrossRefADSGoogle Scholar
  12. 12.
    A. V. Volyar, T. A. Fadeeva, and Yu. A. Egorov, “Vector singularities of Gaussian beams in single-axis crystals: Generation op optical vortices,” Pis’ma Zh. Tekh. Fiz. 28 (22), 70–77 (2002).Google Scholar
  13. 13.
    R. W. Wood, “Vortex rings,” Nature (Gr. Brit.) 63 (1635), 418–420 (1901).CrossRefADSGoogle Scholar
  14. 14.
    G. Gbur and T. D. Visser, “Coherence vortices in partially coherent beams,” Opt. Commun. 222 (1-6), 117–125 (2003).CrossRefADSGoogle Scholar
  15. 15.
    G. Gbur, T. D. Visser, and E. Wolf, ““Hidden” singularities in partially coherent wavefields,” J. Opt. A: Pure Appl. Opt. 6 (5), 239–S242 (2004).CrossRefADSGoogle Scholar
  16. 16.
    G. V. Bogatyryova, Ch. V. Fel’de, P. V. Polyanskii, S. A. Ponomarenko, M. S. Soskin, and E. Wolf, “Partially coherent vortex beams with a separable phase,” Opt. Lett. 28 (11), 878–880 (2003).CrossRefADSGoogle Scholar
  17. 17.
    I. D. Maleev, D. M. Palacios, A. S. Marathay, and G. A. Swartzlander, “Spatial correlation vortices in partially coherent light: Theory,” J. Opt. Soc. Amer., B 21 (11), 1895–1900 (2004).CrossRefADSGoogle Scholar
  18. 18.
    Ch. Ding, L. Pan, and B. Lu, “Phase singularities and spectral changes of spectrally partially coherent higher-order Bessel–Gauss pulsed beams,” J. Opt. Soc. Amer., A 26 (12), 2654–2661 (2009).CrossRefADSGoogle Scholar
  19. 19.
    I. P. Lukin, “Formation of a ring dislocation of a coherence of a vortex optical beam in turbulent atmosphere,” Proc. SPIE—Int. Soc. Opt. Eng. 9066, 90660 (2013).ADSGoogle Scholar
  20. 20.
    R. Borghi, M. Santarsiero, and F. Gori, “Axial intensity of apertured Bessel beams,” J. Opt. Soc. Amer., A 14 (1), 23–26 (1997).CrossRefADSGoogle Scholar
  21. 21.
    B. Chen, Z. Chen, and J. Pu, “Propagation of partially coherent Bessel–Gaussian beams in turbulent atmosphere,” Opt. Laser Technol. 40 (6), 820–827 (2008).CrossRefADSGoogle Scholar
  22. 22.
    K. Zhu, G. Zhou, X. Li, X. Zheng, and H. Tang, “Propagation of Bessel–Gaussian beams with optical vortices in turbulent atmosphere,” Opt. Express 16 (26), 21315–21320 (2008).CrossRefADSGoogle Scholar
  23. 23.
    I. P. Lukin, “Stability of coherent vortex Bessel beams during propagation in turbulent atmosphere,” Opt. Atmos. Okeana 27 (5), 367–374 (2014).Google Scholar
  24. 24.
    I. P. Lukin, “Mean intensity of the vortex Bessel beams propagating in turbulent atmosphere,” Appl. Opt. 53 (15), 3287–3293 (2014).CrossRefADSGoogle Scholar
  25. 25.
    J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Amer., A 4 (4), 651–654 (1987).CrossRefADSGoogle Scholar
  26. 26.
    Zh. Jiang, Q. Lu, and Z. Liu, “Propagation of apertured Bessel beams,” Appl. Opt. 34 (31), 7183–7185 (1995).CrossRefADSGoogle Scholar
  27. 27.
    S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskii, Introduction to Statistical Radiophysics. Random Fields (Nauka, Moscow, 1978) [in Russian].Google Scholar
  28. 28.
    H. T. Eyyuboglu, “Propagation of higher order BesselGaussian beams in turbulence,” Appl. Phys., B 88 (2), 259–265 (2007).CrossRefADSGoogle Scholar
  29. 29.
    Lukin I.P., “Coherence of a Bessel beam in a turbulent atmosphere,” Atmos. Ocean. Opt. 25 (5), 328–337 (2012).CrossRefGoogle Scholar
  30. 30.
    H. T. Eyyuboglu, Y. Baykal, and Y. Cai, “Complex degree of coherence for partially coherent general beams in atmospheric turbulence,” J. Opt. Soc. Amer., A 24 (9), 2891–2901 (2007).CrossRefADSGoogle Scholar
  31. 31.
    H. T. Eyyuboglu, “Propagation and coherence properties of higher order partially coherent dark hollow beams in turbulence,” Opt. Laser Technol. 40 (1), 156–166 (2008).CrossRefADSGoogle Scholar
  32. 32.
    R. Martinez-Herrero and A. Manjavacas, “Overall second-order parametric characterization of light beams propagating through spiral phase elements,” Opt. Commun. 282 (4), 473–477 (2009).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations