Atmospheric and Oceanic Optics

, Volume 28, Issue 5, pp 441–447 | Cite as

Beam splitting algorithm for the problem of light scattering by atmospheric ice crystals. part 1. theoretical foundations of the algorithm

  • A. V. KonoshonkinEmail author
  • N. V. Kustova
  • A. G. Borovoi
Optics of Clusters, Aerosols, and Hydrosoles


The beam splitting algorithm permitting one to obtain a solution of the problem of light scattering by atmospheric crystalline ice particles in the geometrical optics approximation is presented. The construction of Jones and Mueller matrices is considered in detail as a basis of the algorithm. Special attention is paid to the interface of the program implementation of the algorithm, which facilitates its introduction in a thirdparty project. The developed algorithm is freely available as an open source software.


geometrical optics beam splitting algorithm light scattering ice crystals 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles: Theory, Measurements, and Geophysical Applications (Academic Press, San Diego, 1999).Google Scholar
  2. 2.
    L. Bi and P. Yang, Physical-Geometric Optics Hybrid Methods for Computing the Scattering and Absorption Properties of Ice Crystals and Dust Aerosols, Light Scattering Reviews 8, Ed. by A. A. Kokhanovsky (SpringerPraxis, Chichester, 2013), pp. 69–114.Google Scholar
  3. 3.
    H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).Google Scholar
  4. 4.
    Y. Takano and K. N. Liou, “Solar radiative transfer in cirrus clouds. Part I. Single scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46 (1), 3–19 (1989).CrossRefADSGoogle Scholar
  5. 5.
    L. Bi, P. Yang, C. Liu, B. Yi, and B. A. Baum, “Assessment of the accuracy of the conventional ray-tracing technique: Implications in remote sensing and radiative transfer involving ice clouds,” J. Quant. Spectrosc. Radiat. Transfer 146, 158–174 (2014).CrossRefADSGoogle Scholar
  6. 6.
    A. Borovoi, A. Konoshonkin, and N. Kustova, “The physics-optics approximation and its application to light backscattering by hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 146, 181–189 (2014).CrossRefADSGoogle Scholar
  7. 7.
    A. V. Konoshonkin, N. V. Kustova, and A. G. Borovoi, “Limits to applicability of geometrical optics approximation to light backscattering by quasihorizontally oriented hexagonal ice plates,” Atmos. Ocean. Opt. 28 (1), 74–81 (2015).CrossRefGoogle Scholar
  8. 8.
    H. Jacobowitz, “A method for computing the transfer of solar radiation through clouds of hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 11 (6), 691–695 (1971).CrossRefADSGoogle Scholar
  9. 9.
    P. Wendling, R. Wendling, and H. K. Weickmann, “Scattering of solar radiation by hexagonal ice crystals,” Appl. Opt. 18 (15), 2663–2671 (1979).CrossRefADSGoogle Scholar
  10. 10.
    Q. Cai and K. N. Liou, “Polarized light scattering by hexagonal ice crystals: Theory,” Appl. Opt. 21 (19), 3569–3580 (1982).CrossRefADSGoogle Scholar
  11. 11.
    M. Hess and M. Wiegner, “COP: A data library of optical properties of hexagonal ice crystals,” Appl. Opt. 33 (33), 7740–7746 (1994).CrossRefADSGoogle Scholar
  12. 12.
    A. Macke, J. Mueller, and E. Raschke, “Single scattering properties of atmospheric ice crystal,” J. Atmos. Sci. 53 (19), 2813–2825 (1996).CrossRefADSGoogle Scholar
  13. 13.
    K. Muinonen, L. Lamberg, P. Fast, and K. Lumme, “Ray optics regime for Gaussian random spheres,” J. Quant. Spectrosc. Radiat. Transfer 57 (2), 197–205 (1997).CrossRefADSGoogle Scholar
  14. 14.
    A. Borovoi, I. Grishin, E. Naats, and U. Oppel, “Light backscattering by hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 72 (4), 403–417 (2002).CrossRefADSGoogle Scholar
  15. 15.
    A. Macke, “Scattering of light by polyhedral ice crystals,” Appl. Opt. 32 (15), 2780–2788 (1993).CrossRefADSGoogle Scholar
  16. 16.
    P. J. Flatau and B. T. Draine, “Light scattering by hexagonal columns in the discrete dipole approximation,” Opt. Exp. 22 (18), 21834–21846 (2014).CrossRefADSGoogle Scholar
  17. 17.
    S. P. Neshyba, B. Lowen, M. Benning, A. Lawson, and P. M. Rowe, “Roughness metrics of prismatic facets of ice,” J. Geophys. Res., A 118 (8), 3309–3318 (2013).Google Scholar
  18. 18.
    P. Yang and K. N. Liou, “Geometric-optics-integralequation method for light scattering by nonspherical ice crystals,” Appl. Opt. 35 (33), 6568–6584 (1996).CrossRefADSGoogle Scholar
  19. 19.
    K. Masuda, H. Ishimoto, and Y. Mano, “Efficient method of computing a geometric optics integral for light scattering by nonspherical particles,” Pap. Meteorol. Geophys. 63, 15–19 (2012).CrossRefGoogle Scholar
  20. 20.
    A. A. Popov, Scattering of Plane Electromagnetic Waves by a Translucent Convex Polyhedron of an Arbitrary Shape, Available from Izv. Vuzov. Fiz., No. 8006 (Tomsk, 1984).Google Scholar
  21. 21.
    M. Del Guasta, “Calcolo delle proprieta' ottiche dei cristalli di ghiaccio mediante il metodo del tracciamento dei raggi, Applicazione al LIDAR a retrodiffusione,” in Technol. Rep. TR/GCF/95.04 (IROE CNR, Florence, 1995).Google Scholar
  22. 22.
    D. N. Romashov, “Light scattering by hexagonal water ice crystals,” Atmos. Ocean. Opt. 14 (2), 102–110 (2001).Google Scholar
  23. 23.
    A. G. Borovoi and I. A. Grishin, “Scattering matrices for large ice crystal particles,” J. Opt. Soc. Amer., A 20 (11), 2071–2080 (2003).CrossRefADSGoogle Scholar
  24. 24.
    Algorithm for Beam Tracing. sasha-tvo/ Beam-Splitting.Google Scholar
  25. 25.
    C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).Google Scholar
  26. 26.
    M. Born and E. Wolf, Principles of Optics (4th ed.) (Pergamon Press, Great Britain, 1970).Google Scholar
  27. 27.
    M. J. Laszlo, Computational geometry and computer graphics in C++ (Prentice-Hall, Lebanon, 1995).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • A. V. Konoshonkin
    • 1
    • 2
    Email author
  • N. V. Kustova
    • 2
  • A. G. Borovoi
    • 1
    • 2
  1. 1.Tomsk State UniversityTomskRussia
  2. 2.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations