Advertisement

Atmospheric and Oceanic Optics

, Volume 28, Issue 5, pp 387–393 | Cite as

CO2 absorption in band wings in near IR

  • T. E. KlimeshinaEmail author
  • T. M. Petrova
  • O. B. Rodimova
  • A. A. Solodov
  • A. M. Solodov
Spectroscopy of Ambient Medium

Abstract

The CO2 absorption was measured in the 7000 and 8000 cm–1 regions. The absorption coefficients were calculated using the asymptotic line wing shape theory. Line shape parameters were found from fitting to experimental data. The calculation results agree well with the measurement data. According to the line wing theory, the absorption in the band wings is caused by the wings of strong lines of an adjacent band. Within these assumptions, experimental and calculated data on the CO2 absorption coefficient in the band wings in the 7000 and 8000 cm–1 regions can provide information on the line shape at frequency detuning from several tens to several hundreds of half-widths. The results support the hypothesis that line shape parameters in the line wings related to transitions with the same initial state are close to each other. Deviations from a Lorentzian profile are found for some CO2 bands and turn out different for the wings of different bands

Keywords

continuum absorption carbon dioxide self-broadening spectral line wings 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. H. Winters, S. Silverman, and W. S. Benedict, “Line shape in the wing beyond the band head of the 4.3 µm band of CO2,” J. Quant. Spectrosc. Radiat. Transfer 4 (4), 527–537 (1964).CrossRefADSGoogle Scholar
  2. 2.
    M. O. Bulanin, V. P. Bulychev, P. V. Granskii, A. P. Kouzov, and M. V. Tonkov, “Study of CO2 transmission functions in the 4.3 and 15 µm band regions,” in Problems of Atmospheric Physics (LGU, Leningrad, 1976), is. 13, pp. 14–24 [in Russian].Google Scholar
  3. 3.
    V. Menoux, R. LeDoucen, J. Boissoles, and C. Boulet, “Line shape in the low-frequency wing of selfand N2broadened v3 CO2 lines: Temperature dependence of the asymmetry,” Appl. Opt. 30 (3), 281–286 (1991).CrossRefADSGoogle Scholar
  4. 4.
    M. O. Bulanin, A. B. Dokuchaev, M. V. Tonkov, and N. N. Filipov, “Influence of the line interference on the vibration-rotation band shapes,” J. Quant. Spectrosc. Radiat. Transfer 31 (6), 521–543 (1984).CrossRefADSGoogle Scholar
  5. 5.
    S. Stefani, G. Piccioni, M. Snels, D. Grassi, and A. Adriani, “Experimental CO2 absorption coefficients at high pressure and high temperature,” J. Quant. Spectrosc. Radiat. Transfer 117, 21–28 (2013).CrossRefADSGoogle Scholar
  6. 6.
    H. Tran, C. Boulet, S. Stefani, M. Snels, and G. Piccioni, “Measurements and modelling of high pressure pure CO2 spectra from 750 to 8500 cm–1: I-central and wing regions of the allowed vibrational bands,” J. Quant. Spectrosc. Radiat. Transfer 112 (6), 925–936 (2011).CrossRefADSGoogle Scholar
  7. 7.
    R. Wordsworth, F. Forget, and V. Eymet, “Infrared collision induced and far line absorption in dense CO2 atmospheres,” Icarus 210 (2), 992–997 (2010).CrossRefADSGoogle Scholar
  8. 8.
    M. Y. Perrin and J. M. Hartmann, “Temperature-dependent measurements and modeling of absorption by CO2–N2 mixtures in the far line-wings of the 4.3-µm CO2 band,” J. Quant. Spectrosc. Radiat. Transfer 42 (4), 311–317 (1989).CrossRefADSGoogle Scholar
  9. 9.
    D. E. Burch and D. A. Gryvnak, “Absorption of infrared radiant energy by CO2 and H2O. V. Absorption by CO2 between 1100 and 1835 cm–1 (9.1–5.5 µm),” J. Opt. Soc. Am. 61 (4), 499–503 (1971).CrossRefADSGoogle Scholar
  10. 10.
    D. E. Burch, D. A. Gryvnak, R. R. Patty, and Ch. E. Bartky, “Absorption of infrared radiant energy by CO2 and H2O. IV. Shapes of collision-broadened CO2 lines,” J. Opt. Soc. Am. 59 (3), 267–280 (1969).CrossRefADSGoogle Scholar
  11. 11.
    J. Lamouroux, H. Tran, A. L. Laraia, R. R. Gamache, L. S. Rothman, I. E. Gordon, and J.-M. Hartmann, “Updated database plus software for line-mixing in CO2 infrared spectra and their test using laboratory spectra in the 1.5-2.3 µm region,” J. Quant. Spectrosc. Radiat. Transfer 111 (15), 2321–2331 (2010).CrossRefADSGoogle Scholar
  12. 12.
    Q. Ma and R. H. Tipping, “The distribution of density matrices over potential-energy surfaces: Application to the calculation of the far-wing line shapes for CO2,” J. Chem. Phys. 108 (9), 3386–3399 (1998).CrossRefADSGoogle Scholar
  13. 13.
    Q. Ma, R. H. Tipping, C. Boulet, and J. Bouanich, “Theoretical far-wing line shape and absorption for high-temperature CO2,” Appl. Opt. 38 (3), 599–604 (1999).CrossRefADSGoogle Scholar
  14. 14.
    L. I. Nesmelova, O. B. Rodimova, and S. D. Tvorogov, Spectral Line Profile and Intermolecular Interaction (Nauka, Novosibirsk, 1986) [in Russian].Google Scholar
  15. 15.
    S. D. Tvorogov and L. I. Nesmelova, “Radiation processes in band wings of atmospheric gases,” Izv. Akad. Nauk SSSR, Ser. Fiz. Atmos. Okeana 12 (6), 627–633 (1976).ADSGoogle Scholar
  16. 16.
    L. I. Nesmelova, O. B. Rodimova, and S. D. Tvorogov, “Coefficient of light absorption in SO2 4.3 µm band.” Izv. vuzov, Fiz., no. 10, 106–107 (1980).Google Scholar
  17. 17.
    L. I. Nesmelova, O. B. Rodimova, and S. D. Tvorogov, “Spectral behavior of the absorption coefficients in the 4.3 µm CO2 band within a wide range of temperature and pressure,” Atmos. Ocean. Opt. 5 (9), 609–614 (1992).Google Scholar
  18. 18.
    O. B. Rodimova, “Spectral line profile of self-broadened CO2 from the center to the far wing,” Atmos. Ocean. Opt. 15 (9), 694–703 (2002).Google Scholar
  19. 19.
    B. Bezard, A. Fedorova, J.-L. Bertaux, A. Rodin, and O. Korablev, “The 1.10and 1.18-µm nightside windows of Venus observed by SPICAV-IR aboard Venus Express,” Icarus 216 (1), 173–183 (2011).CrossRefADSGoogle Scholar
  20. 20.
    T. S. Afanasenko and A. V. Rodin, “The effect of collisional line broadening on the spectrum and fluxes of thermal radiation in the lower atmosphere of Venus,” Sol. Sys. Rep. 39 (3), 187–198 (2005).CrossRefADSGoogle Scholar
  21. 21.
    T. S. Afanasenko and A. V. Rodin, “Interference of spectral lines in thermal radiation from the lower atmosphere of Venus,” Astron. Lett. 33 (3), 203–210 (2007).CrossRefADSGoogle Scholar
  22. 22.
    T. E. Klimeshina, T. M. Petrova, O. B. Rodimova, A. M. Solodov, and A. A. Solodov, “The CO2 absorption near band heads in the 8000 cm–1 region,” Opt. Atmos. Okeana 26 (11), 925–931 (2014).Google Scholar
  23. 23.
    Yu. N. Ponomarev, T. M. Petrova, A. M. Solodov, A. A. Solodov, and S. A. Sulakshin, “A Fourier-spectrometer with a 30-m base-length multipass cell for the study of weak absorption spectra of atmospheric gases,” Atmos. Ocean. Opt. 24 (6), 593–595 (2011).CrossRefGoogle Scholar
  24. 24.
    I. V. Ptashnik, T. M. Petrova, Yu. N. Ponomarev, K. P. Shine, A. A. Solodov, and A. M. Solodov, “Near infrared water vapour self-continuum at close to room temperature,” J. Quant. Spectrosc. Radiat. Transfer 120, 23–35 (2013).CrossRefADSGoogle Scholar
  25. 25.
    S. D. Tvorogov and O. B. Rodimova, “Spectral line shape. I. Kinetic equation for arbitrary frequency detunings,” J. Chem. Phys. 102 (22), 8736–8745 (1995).CrossRefADSGoogle Scholar
  26. 26.
    Yu. V. Bogdanova and O. B. Rodimova, “Line shape in far wings and water vapor absorption in a broad temperature interval,” J. Quant. Spectrosc. Radiat. Transfer 111 (15), 2298–2307 (2010).CrossRefADSGoogle Scholar
  27. 27.
    E. P. Gordov and S. D. Tvorogov, Technique for Semiclassical Representation of Qunatum Theory (Nauka, Novosibirsk, 1984) [in Russian].Google Scholar
  28. 28.
    R. Zwanzig, “Ensemble method in the theory of irreversibility,” J. Chem. Phys. 33 (5), 1338–1341 (1960).MathSciNetCrossRefADSGoogle Scholar
  29. 29.
    J. O. Hirschfelder, Ch. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).zbMATHGoogle Scholar
  30. 30.
    O. K. Voitsekhovskaya, L. I. Nesmelova, O. B. Rodimova, O. N. Sulakshina, Yu. S. Makushkin, and S. D. Tvorogov, “Light absorption coefficient in 1.4 µm CO2 band wind,” in Abstracts of the 6th All-Russian Symposium on Laser Radiation Propagation in the Atmosphere (Tomsk, 1981), Part 2, pp. 16–19 [in Russian].Google Scholar
  31. 31.
    L. I. Nesmelova, O. B. Rodimova, S. D. Tvorogov, O. K. Voitsekhovskaya, Yu. S. Makushkin, and O. N. Sulakshina, “Light absorption coefficient in CO2 band wings in the 2.7-µm region,” in Abstracts of the 6th All-Russian Symposium on Laser Radiation Propagation in the Atmosphere (Tomsk, 1982), Part 2, pp. 62–66 [in Russian].Google Scholar
  32. 32.
    L. I. Nesmelova, O. B. Rodimova, S. D. Tvorogov, O. K. Voitsekhovskaya, and O. N. Sulakshina, “Absorption coefficient in CO2 band wings in the 790–910 cm–1 spectral range,” Izv. Vuzov, Fiz., No. 5, 105–108 (1982).Google Scholar
  33. 33.
    A. A. Solodov, T. E. Klimeshina, T. M. Petrova, O. B. Rodimova, and A. M. Solodov, “The CO2 line shape in the far wing in the 8200–8300 cm–1 spectral region,” in Proc. of the 23rd Colloquium on High Resolution Molecular Spectroscopy (Budapest, 2013), p. 74.Google Scholar
  34. 34.
    R. Le Doucen, C. Cousin, C. Boulet, and A. Henry, “Temperature dependence of the absorption in the region beyond the 4.3 µm band of CO2. I: Pure CO2 case,” Appl. Opt. 24 (6), 897–906 (1985).CrossRefADSGoogle Scholar
  35. 35.
    J.-M. Hartmann and C. Boulet, “Line mixing and finite duration of collision effects in pure CO2 infrared spectra: Fitting and scaling analysis,” J. Chem. Phys. 94 (10), 6406–6419 (1991).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • T. E. Klimeshina
    • 1
    Email author
  • T. M. Petrova
    • 1
  • O. B. Rodimova
    • 1
  • A. A. Solodov
    • 1
  • A. M. Solodov
    • 1
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations