Atmospheric and Oceanic Optics

, Volume 28, Issue 5, pp 406–414 | Cite as

Multipole electric moments and higher polarizabilities of molecules: Methodology and some results of ab initio calculations

  • Yu. N. KaluginaEmail author
  • V. N. Cherepanov
Spectroscopy of Ambient Medium


The technique of calculation of electric multipole moments and higher molecular polarizabilities is described. With the help of high-level ab initio methods (R)CCSD(T) and CCSD(T) with different aug-ccVXZ basis sets (X = Q, 5) dipole, quadrupole, octupole, hexadecapole moments and dipole, dipole-quadrupole, dipole-octupole, quadrupole-quadrupole polarizabilities of H2, O2, N2, CO2, CO, CN, HCl, HCN, NaCl, OH, N2H+, CH4, and H2O molecules have been calculated.


multipole moments higher polarizabilities ab initio calculations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Partridge and D. W. Schwenke, “The determination of an accurate isotope dependent potential energy surface for water from extensive ab initio calculations and experimental data,” J. Chem. Phys. 106 (11), 4618–4638 (1997).CrossRefADSGoogle Scholar
  2. 2.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F.Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, M. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision D.01 (Gaussian, Inc., Wallingford, 2009).Google Scholar
  3. 3.
    H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schutz, P. Celani, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. Deegan, A. J. O' Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Koppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklass, D. P. O' Neill, P. Palmieri, D. Peng, K. Pfluger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang, and A. Wolf, Molpro, Version 2012.1, A Package of Ab Initio Program.s http://www.molpro.netGoogle Scholar
  4. 4.
    CFOUR, a quantum chemical program package written by J.F. Stanton, J. Gauss, M.E. Harding, P.G. Szalay with contributions from A.A. Auer, R.J. Bartlett, U. Benedikt, C. Berger, D.E. Bernholdt, Y.J. Bomble, L. Cheng, O. Christiansen, M. Heckert, O. Heun, C. Huber, T.-C. Jagau, D. Jonsson, J. Jusélius, K. Klein, W.J. Lauderdale, D.A. Matthews, T. Metzroth, L.A. Mück, D.P. O’Neill, D.R. Price, E. Prochnow, C. Puzzarini, K. Ruud, F. Schiffmann, W. Schwalbach, C. Simmons, S. Stopkowicz, A. Tajti, J. Vázquez, F. Wang, J.D. Watts and the integral packages MOLECULE (J. Almlöf and P. R. Taylor), PROPS (P. R. Taylor), ABACUS (T. Helgaker, H. J. Aa. Jensen, P. Jørgensen, J. Olsen), and ECP routines by A. V. Mitin and C. van Wüllen. http://www.cfour.deGoogle Scholar
  5. 5. Scholar
  6. 6.
    M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, “General atomic and molecular electronic structure system,” J. Comput. Chem. 14 (11), 1347–1363 (1993).CrossRefGoogle Scholar
  7. 7.
    http://www.turbomole.comGoogle Scholar
  8. 8.
    S. Kelikh, Nonlinear Molecular Optics, Ed. by I.L. Fabelinskii (Nauka, Moscow, 1981) [in Russian].Google Scholar
  9. 9.
    E. Buckingham, Foundations for the Theory of Intermolecular Forces. Application to Small Molecules. Intermolecular Interactions: From Diatomic Molecules to Biopolimers, Ed. by B. Pyul’man (Mir, Moscow, 1981) [in Russian].Google Scholar
  10. 10.
    D. Buckingham, “Permanent and induced molecular moments and long-range intermolecular forces,” Adv. Chem. Phys. 12, 107–142 (1967).Google Scholar
  11. 11.
    Yu. Kalugina, PhD Thesis (ICB, Dijon, 2010).Google Scholar
  12. 12.
    A. Salam, Molecular Quantum Electrodynamics: LongRange Intermolecular Interactions (John Wiley and Sons, New Jersey, 2010).Google Scholar
  13. 13.
    Atoms, Molecules and Clusters in Electric Fields. Theoretical Approaches to Calculation of Electric Polarizability. Computational, Numerical and Mathematical Methods in Science and Engineering, Ed. by G. Maroulis (Imperial College Press, Singapore, 2006), Vol. 1.Google Scholar
  14. 14.
    Computational Aspects of Electric Polarizability Calculations, Atoms, Molecules and Clusters, Ed. by G. Maroulis (IOS Press, Amsterdam, 2006).Google Scholar
  15. 15.
    Atomic and Molecular Nonlinear Optics: Theory, Experiment and Computation. A homage to the Pioneering Work of Stanislaw Kielich (1925–1993), Ed. by G. Maroulis, T. Bancewicz, B. Champagne, and A.D. Buckingham (IOS Press, Amsterdam, 2011).Google Scholar
  16. 16.
    N. Zvereva-Loete, Yu. N. Kalugina, V. Boudon, M. A. Buldakov, and V. N. Cherepanov, “Dipole moment surface of the van der Waals complex CH4–N2,” J. Chem. Phys. 133 (18), 184302 (2010).CrossRefADSGoogle Scholar
  17. 17.
    M. A. Buldakov, V. N. Cherepanov, Yu. N. Kalugina, N. Zvereva-Loëte, and V. Boudon, “Static polarizability surfaces of the van der Waals complex CH4–N2,” J. Chem. Phys. 132 (16), 164304 (2009).CrossRefADSGoogle Scholar
  18. 18.
    Yu. N. Kalugina, V. N. Cherepanov, M. A. Buldakov, N. Zvereva-Loete, and V. Boudon, “Theoretical investigation of the ethylene dimer: Interaction energy and dipole moment,” J. Comput. Chem. 33 (3), 319–330 (2012).CrossRefGoogle Scholar
  19. 19.
    Y. N. Kalugina, M. A. Buldakov, and V. N. Cherepanov, “Static hyperpolarizability of the van der Waals complex CH4–N2,” J. Comput. Chem. 33 (32), 2544–2553 (2012).CrossRefGoogle Scholar
  20. 20.
    G. Maroulis, “A systematic study of basis set, electron correlation, and geometry effects on the electric multipole moments, polarizability, and hyperpolarizability of HCl,” J. Chem. Phys. 108 (13), 5432–5448 (1998).CrossRefADSGoogle Scholar
  21. 21.
    J. Stone, The Theory of Intermolecular Forces (Clarendon Press, Oxford, 2002).Google Scholar
  22. 22.
    J. Olsen and P. Jorgensen, “Linear and nonlinear response functions for an exact state and for an MCSCF state,” J. Chem. Phys. 82 (7), 3235–3264 (1985).CrossRefADSGoogle Scholar
  23. 23.
    A. D. Buckingham and J. E. Cordle, “Nuclear motion corrections to some electric and magnetic properties of diatomic molecules,” Mol. Phys. 28 (4), 1037–1047 (1974).CrossRefADSGoogle Scholar
  24. 24.
    P. E. S. Wormer, H. Hettema, and A. J. Thakkar, “Intramolecular bond length dependence of the anisotropic dispersion coefficients for H2-rare gas interactions,” J. Chem. Phys. 98 (9), 7140–7144 (1993).CrossRefADSGoogle Scholar
  25. 25.
    A. D. Buckingham, R. L. Disch, and D. A. Dummur, “The quadrupole moments of some simple molecules,” J. Amer. Chem. Soc. 90 (12), 3104–3107 (1968).CrossRefGoogle Scholar
  26. 26.
    M. Bartolomei, E. Carmona-Novillo, M. I. Hernández, J. Campos-Martínez, and R. Hernández-Lamoneda, “Long-range interaction for dimers of atmospheric interest: Dispersion, induction and electrostatic contributions for O2–O2, N2–N2 and O2–N2,” J. Comput. Chem. 32 (2), 279–290 (2011).CrossRefGoogle Scholar
  27. 27.
    A. D. Buckingham, C. Graham, and J. H. Williams, “Electric field-gradient-induced birefringence in N2, C2H6, C3H6, Cl2, N2O and CH3F,” Mol. Phys. 49 (3), 703–710 (1983).CrossRefADSGoogle Scholar
  28. 28.
    G. Maroulis, “Accurate electric multipole moment, static polarizability and hyperpolarizability derivatives for N2,” J. Chem. Phys. 118 (6), 2673–2687 (2003).CrossRefADSGoogle Scholar
  29. 29.
    H. Kling and W. Huettner, “The temperature dependence of the Cotton-Mouton effect of N2, CO, N2O, CO2, OCS, and CS2 in the gaseous state,” Chem. Phys. 90 (1-2), 207–214 (1984).CrossRefADSGoogle Scholar
  30. 30.
    G. Maroulis, “Electric (hyper)polarizability derivatives for the symmetric stretching of carbon dioxide,” Chem. Phys. 291 (1), 81–95 (2003).CrossRefADSGoogle Scholar
  31. 31.
    W. L. Meerts, F. H. De Leeuw, and A. Dymanus, “Electric and magnetic properties of carbon monoxide by molecular-beam electric-resonance spectroscopy,” Chem. Phys. 22 (2), 319–324 (1977).CrossRefADSGoogle Scholar
  32. 32.
    J. M. M. Roco, A. Calvo Hernandez, and S. Velasco, “Far-infrared permanent and induced dipole absorption of diatomic molecules in rare-gas fluids. I. Spectral theory,” J. Chem. Phys. 103 (21), 9161–9174 (1995).CrossRefADSGoogle Scholar
  33. 33.
    J. M. M. Roco, A. Medina, A. Calvo Hernandez, and S. Velasco, “Far-infrared permanent and induced dipole absorption of diatomic molecules in rare-gas fluids. II. Application to the CO–Ar system,” J. Chem. Phys. 103 (21), 9175–9186 (1995).CrossRefADSGoogle Scholar
  34. 34.
    R. Thomson and F. W. Dalby, “Experimental determination of the dipole moments of the X(2Σ+) and B(2+) states of the CN molecule,” Can. J. Phys. 46 (24), 2815–2819 (1968).CrossRefADSGoogle Scholar
  35. 35.
    E. W. Kaiser, “Dipole moment and hyperfine parameters of H35Cl and D35Cl,” J. Chem. Phys. 53 (5), 1686–1703 (1970).CrossRefADSGoogle Scholar
  36. 36.
    F. H. De Leeuw and A. Dymanus, “Magnetic properties and molecular quadrupole moment of HF and HCl by molecular-beam electric-resonance spectroscopy,” J. Mol. Spectrosc. 48 (3), 427–445 (1973).CrossRefADSGoogle Scholar
  37. 37.
    G. Maroulis, “A systematic study of basis set, electron correlation, and geometry effects on the electric multipole moments, polarizability, and hyperpolarizability of HCl,” J. Chem. Phys. 108 (13), 5432–5445 (1998).CrossRefADSGoogle Scholar
  38. 38.
    C. Pouchan and G. Maroulis, “Accurate electric multipole moments for HCN and HCP from CCSD(T) calculations with large Gaussian basis sets,” Theor. Chim. Acta. 93 (3), 131–140 (1996).CrossRefGoogle Scholar
  39. 39.
    A. J. Hebert, F. J. Lovas, C. A. Melendres, C. D. Hollowell, T. L. Story, and K. Street, “Dipole moments of some alkali halide molecules by the molecular beam electric resonance method,” J. Chem. Phys. 48 (6), 2824–2825 (1968).CrossRefADSGoogle Scholar
  40. 40.
    G. Maroulis, “Evaluating the performance of DFT methods in electric property calculations: sodium chloride as a test case,” Rep. Theor. Chem. 2 (1), 1–8 (2013).CrossRefGoogle Scholar
  41. 41.
    W. L. Meerts and A. Dymanus, “Electric dipole moments of OH and OD by molecular beam electric resonance,” Chem. Phys. Lett. 23 (1), 45–47 (1973).CrossRefADSGoogle Scholar
  42. 42.
    L. Laaksonen, F. Muller-Plathe, and G. H. F. Diercksen, “Fully numerical restricted Hartree-Fock calculations on open-shell hydrides: On the basis-set truncation error,” J. Chem. Phys. 89 (8), 4903–4908 (1988).CrossRefADSGoogle Scholar
  43. 43.
    G. Maroulis, “Electric dipole hyperpolarizability and quadrupole polarizability of methane from finite-field coupled cluster and fourth-order many-body perturbation theory calculations,” Chem. Phys. Lett. 226 (3-4), 420–426 (1994).CrossRefADSGoogle Scholar
  44. 44.
    A. C. Newell and R. C. Baird, “Absolute determination of refractive indices of gases at 47.7 Gigahertz,” J. Appl. Phys. 36 (12), 3751–3759 (1965).CrossRefADSGoogle Scholar
  45. 45.
    J. W. Schmidt and M. R. Moldover, “Dielectric permittivity of eight gases measured with cross capacitors,” Int. J. Thermophys. 24 (2), 375–403 (2003).CrossRefGoogle Scholar
  46. 46.
    G. A. Parker and R. T. Pack, “Van der Waals interactions of carbon monoxide,” J. Chem. Phys. 64 (5), 2010–2012 (1976).CrossRefADSGoogle Scholar
  47. 47.
    M. Medved, M. Urban, V. Kello, and G. H. F. Diercksen, “Accuracy assessment of the ROHF-CCSD(T) calculations of static dipole polarizabilities of diatomic radicals: O2, CN, and NO,” J. Mol. Struct. (Theochem.) 547 (1-3), 219–232 (2001).CrossRefGoogle Scholar
  48. 48.
    A. Kumar and W.J. Meath, “Integrated dipole oscillator strength and dipole properties for Ne, Ar, Kr, Xe, HF, HCl and HBr,” Can. J. Chem. 63 (7), 1616–1630 (1985).CrossRefGoogle Scholar
  49. 49.
    G. Maroulis and C. Pouchan, “Molecules in static electric fields: Linear and nonlinear polarizability of HCN and HCP,” Phys. Rev., A 57 (4), 2440–2447 (1998).CrossRefADSGoogle Scholar
  50. 50.
    G. Maroulis, “Quadrupole polarizability and hyperpolarizability of carbon monoxide,” Theor. Chim. Acta 84 (3), 245–253 (1992).CrossRefGoogle Scholar
  51. 51.
    G. Maroulis, “Dipole-quadrupole and dipole-octopole polarizability for CH4 and CF4,” J. Chem. Phys. 105 (18), 8467–8468 (1996).CrossRefADSGoogle Scholar
  52. 52.
    T. R. Dyke and J. S. Muenter, “Electric dipole moments of low J states of H2O and D2O,” J. Chem. Phys. 59 (6), 3125–3127 (1973).CrossRefADSGoogle Scholar
  53. 53.
    J. Verhoeven and A. Dymanus, “Magnetic properties and molecular quadrupole tensor of the water molecule by beam-maser Zeeman spectroscopy,” J. Chem. Phys. 52 (6), 3222–3233 (1970).CrossRefADSGoogle Scholar
  54. 54.
    I. G. John, G. B. Bacskay, and N. S. Hush, “Finite field method calculations. VI. Raman scattering activities, infrared absorption intensities and higher-order moments: SCF and CI calculations for the isotopic derivatives of H2O and SCF calculations for CH4,” Chem. Phys. 51 (1-2), 49–60 (1980).CrossRefADSGoogle Scholar
  55. 55.
    C. Huiszoon, “Ab initio calculations of multipole moments, polarizabilities and isotropic long range interaction coefficients for dimethylether, methanol, methane, and water,” Mol. Phys. 58 (5), 865–885 (1986).CrossRefADSGoogle Scholar
  56. 56.
    C. D. Zeiss and W. J. Meath, “Dispersion energy constants C6(A, B), dipole oscillator strength sums and refractivities for Li, N, O, H2, N2, O2, NH3, H2O, NO and N2O,” Mol. Phys. 33 (4), 1155–1176 (1977).CrossRefADSGoogle Scholar
  57. 57.
    A. Weber, “High-resolution rotational Raman spectra of gases,” in Raman Spectroscopy of Gases and Liquids. Topics in Current Physics, Ed. by A. Weber (Berlin, Springer, 1979), Vol. 11, pp. 71–121.CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.National Research Tomsk State UniversityTomskRussia

Personalised recommendations